Isabel L Day, Mikayla Tamboline, Andrea Litwak, Andrea Sarabia, Yin Tintut, Linda L Demer, Shili Xu
{"title":"Novel Quantification Protocol for Cardiovascular Calcification Progression Using Longitudinal MicroPET/MicroCT Images.","authors":"Isabel L Day, Mikayla Tamboline, Andrea Litwak, Andrea Sarabia, Yin Tintut, Linda L Demer, Shili Xu","doi":"10.3791/66805","DOIUrl":null,"url":null,"abstract":"<p><p>Micro positron emission tomography (PET) and micro computed tomography (CT) imaging are powerful, ideal research tools for following the progression of cardiovascular calcification. Due to their non-invasive nature, small research animals can be imaged at multiple time points. The challenge lies in the accurate quantification of cardiovascular calcification. Here, we provide a protocol, using images from the later disease stages as a template, to accurately quantify the progression of cardiovascular calcification in longitudinal studies. The protocol involves 1) the alignment of the chest area in multiple images from the same animal during a longitudinal study as the first step, 2) the definition of a region of interest (ROI) situated within the heart and the aorta at the site of larger calcium deposits that become apparent in later images, and 3) simultaneous segmentation and quantification of calcium deposits across all images acquired during the longitudinal study. This streamlined method enhances the accuracy of image analysis in following the progression of cardiovascular calcification by improving the precision of ROI definition and reducing the variability associated with earlier techniques that analyze individual scans independently.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/66805","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Micro positron emission tomography (PET) and micro computed tomography (CT) imaging are powerful, ideal research tools for following the progression of cardiovascular calcification. Due to their non-invasive nature, small research animals can be imaged at multiple time points. The challenge lies in the accurate quantification of cardiovascular calcification. Here, we provide a protocol, using images from the later disease stages as a template, to accurately quantify the progression of cardiovascular calcification in longitudinal studies. The protocol involves 1) the alignment of the chest area in multiple images from the same animal during a longitudinal study as the first step, 2) the definition of a region of interest (ROI) situated within the heart and the aorta at the site of larger calcium deposits that become apparent in later images, and 3) simultaneous segmentation and quantification of calcium deposits across all images acquired during the longitudinal study. This streamlined method enhances the accuracy of image analysis in following the progression of cardiovascular calcification by improving the precision of ROI definition and reducing the variability associated with earlier techniques that analyze individual scans independently.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.