Improving Student Outcomes with an Adaptable Molecular Cloning Course-Based Undergraduate Research Experience.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Christopher B Cummings, Samuel S Catania, Eirene M Q Ednacot, Austin J Kinsella-Johnson, Claire E Meeds, Jack W Reynolds, Ava E Sanderson, Rachel A Johnson, Katharine R Watts
{"title":"Improving Student Outcomes with an Adaptable Molecular Cloning Course-Based Undergraduate Research Experience.","authors":"Christopher B Cummings, Samuel S Catania, Eirene M Q Ednacot, Austin J Kinsella-Johnson, Claire E Meeds, Jack W Reynolds, Ava E Sanderson, Rachel A Johnson, Katharine R Watts","doi":"10.3791/67067","DOIUrl":null,"url":null,"abstract":"<p><p>The continuous advancement of molecular biology techniques requires that molecular biology curricula are regularly refined to effectively prepare students to enter the workforce with modern competencies. In particular, the emergence of Gibson Assembly, a highly customizable and adaptive molecular cloning technique, has advanced the landscape of molecular cloning in numerous research environments. Thus, we created a Gibson Assembly cloning module for deployment in a molecular biology laboratory course at California Polytechnic State University, San Luis Obispo and evaluated student learning outcomes from the module. Over three iterations of the course, students participated in an experiment-based independent project that involved cloning three unique plasmid libraries to support research projects in natural products biosynthesis. Students were given pre- and post-questionnaires to evaluate their understanding of molecular cloning and their confidence in molecular biology terms and techniques. Students' responses showed a significant increase in both learning molecular cloning concepts and in self-reported confidence with molecular cloning terms and techniques. This module framework can be generalized to teach Gibson Assembly for various applications, providing instructors with a toolkit for teaching an adaptable and emergent cloning technology while advancing their research projects.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67067","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous advancement of molecular biology techniques requires that molecular biology curricula are regularly refined to effectively prepare students to enter the workforce with modern competencies. In particular, the emergence of Gibson Assembly, a highly customizable and adaptive molecular cloning technique, has advanced the landscape of molecular cloning in numerous research environments. Thus, we created a Gibson Assembly cloning module for deployment in a molecular biology laboratory course at California Polytechnic State University, San Luis Obispo and evaluated student learning outcomes from the module. Over three iterations of the course, students participated in an experiment-based independent project that involved cloning three unique plasmid libraries to support research projects in natural products biosynthesis. Students were given pre- and post-questionnaires to evaluate their understanding of molecular cloning and their confidence in molecular biology terms and techniques. Students' responses showed a significant increase in both learning molecular cloning concepts and in self-reported confidence with molecular cloning terms and techniques. This module framework can be generalized to teach Gibson Assembly for various applications, providing instructors with a toolkit for teaching an adaptable and emergent cloning technology while advancing their research projects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信