Christian Lebiere, Peter Pirolli, Matthew Johnson, Michael Martin, Donald Morrison
{"title":"Cognitive Models for Machine Theory of Mind.","authors":"Christian Lebiere, Peter Pirolli, Matthew Johnson, Michael Martin, Donald Morrison","doi":"10.1111/tops.12773","DOIUrl":null,"url":null,"abstract":"<p><p>Some of the required characteristics for a true machine theory of mind (MToM) include the ability to (1) reproduce the full diversity of human thought and behavior, (2) develop a personalized model of an individual with very limited data, and (3) provide an explanation for behavioral predictions grounded in the cognitive processes of the individual. We propose that a certain class of cognitive models provide an approach that is well suited to meeting those requirements. Being grounded in a mechanistic framework like a cognitive architecture such as ACT-R naturally fulfills the third requirement by mapping behavior to cognitive mechanisms. Exploiting a modeling paradigm such as instance-based learning accounts for the first requirement by reflecting variations in individual experience into a diversity of behavior. Mechanisms such as knowledge tracing and model tracing allow a specific run of the cognitive model to be aligned with a given individual behavior trace, fulfilling the second requirement. We illustrate these principles with a cognitive model of decision-making in a search and rescue task in the Minecraft simulation environment. We demonstrate that cognitive models personalized to individual human players can provide the MToM capability to optimize artificial intelligence agents by diagnosing the underlying causes of observed human behavior, projecting the future effects of potential interventions, and managing the adaptive process of shaping human behavior. Examples of the inputs provided by such analytic cognitive agents include predictions of cognitive load, probability of error, estimates of player self-efficacy, and trust calibration. Finally, we discuss implications for future research and applications to collective human-machine intelligence.</p>","PeriodicalId":47822,"journal":{"name":"Topics in Cognitive Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/tops.12773","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Some of the required characteristics for a true machine theory of mind (MToM) include the ability to (1) reproduce the full diversity of human thought and behavior, (2) develop a personalized model of an individual with very limited data, and (3) provide an explanation for behavioral predictions grounded in the cognitive processes of the individual. We propose that a certain class of cognitive models provide an approach that is well suited to meeting those requirements. Being grounded in a mechanistic framework like a cognitive architecture such as ACT-R naturally fulfills the third requirement by mapping behavior to cognitive mechanisms. Exploiting a modeling paradigm such as instance-based learning accounts for the first requirement by reflecting variations in individual experience into a diversity of behavior. Mechanisms such as knowledge tracing and model tracing allow a specific run of the cognitive model to be aligned with a given individual behavior trace, fulfilling the second requirement. We illustrate these principles with a cognitive model of decision-making in a search and rescue task in the Minecraft simulation environment. We demonstrate that cognitive models personalized to individual human players can provide the MToM capability to optimize artificial intelligence agents by diagnosing the underlying causes of observed human behavior, projecting the future effects of potential interventions, and managing the adaptive process of shaping human behavior. Examples of the inputs provided by such analytic cognitive agents include predictions of cognitive load, probability of error, estimates of player self-efficacy, and trust calibration. Finally, we discuss implications for future research and applications to collective human-machine intelligence.
期刊介绍:
Topics in Cognitive Science (topiCS) is an innovative new journal that covers all areas of cognitive science including cognitive modeling, cognitive neuroscience, cognitive anthropology, and cognitive science and philosophy. topiCS aims to provide a forum for: -New communities of researchers- New controversies in established areas- Debates and commentaries- Reflections and integration The publication features multiple scholarly papers dedicated to a single topic. Some of these topics will appear together in one issue, but others may appear across several issues or develop into a regular feature. Controversies or debates started in one issue may be followed up by commentaries in a later issue, etc. However, the format and origin of the topics will vary greatly.