Cognitive Models for Machine Theory of Mind.

IF 2.9 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Christian Lebiere, Peter Pirolli, Matthew Johnson, Michael Martin, Donald Morrison
{"title":"Cognitive Models for Machine Theory of Mind.","authors":"Christian Lebiere, Peter Pirolli, Matthew Johnson, Michael Martin, Donald Morrison","doi":"10.1111/tops.12773","DOIUrl":null,"url":null,"abstract":"<p><p>Some of the required characteristics for a true machine theory of mind (MToM) include the ability to (1) reproduce the full diversity of human thought and behavior, (2) develop a personalized model of an individual with very limited data, and (3) provide an explanation for behavioral predictions grounded in the cognitive processes of the individual. We propose that a certain class of cognitive models provide an approach that is well suited to meeting those requirements. Being grounded in a mechanistic framework like a cognitive architecture such as ACT-R naturally fulfills the third requirement by mapping behavior to cognitive mechanisms. Exploiting a modeling paradigm such as instance-based learning accounts for the first requirement by reflecting variations in individual experience into a diversity of behavior. Mechanisms such as knowledge tracing and model tracing allow a specific run of the cognitive model to be aligned with a given individual behavior trace, fulfilling the second requirement. We illustrate these principles with a cognitive model of decision-making in a search and rescue task in the Minecraft simulation environment. We demonstrate that cognitive models personalized to individual human players can provide the MToM capability to optimize artificial intelligence agents by diagnosing the underlying causes of observed human behavior, projecting the future effects of potential interventions, and managing the adaptive process of shaping human behavior. Examples of the inputs provided by such analytic cognitive agents include predictions of cognitive load, probability of error, estimates of player self-efficacy, and trust calibration. Finally, we discuss implications for future research and applications to collective human-machine intelligence.</p>","PeriodicalId":47822,"journal":{"name":"Topics in Cognitive Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/tops.12773","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Some of the required characteristics for a true machine theory of mind (MToM) include the ability to (1) reproduce the full diversity of human thought and behavior, (2) develop a personalized model of an individual with very limited data, and (3) provide an explanation for behavioral predictions grounded in the cognitive processes of the individual. We propose that a certain class of cognitive models provide an approach that is well suited to meeting those requirements. Being grounded in a mechanistic framework like a cognitive architecture such as ACT-R naturally fulfills the third requirement by mapping behavior to cognitive mechanisms. Exploiting a modeling paradigm such as instance-based learning accounts for the first requirement by reflecting variations in individual experience into a diversity of behavior. Mechanisms such as knowledge tracing and model tracing allow a specific run of the cognitive model to be aligned with a given individual behavior trace, fulfilling the second requirement. We illustrate these principles with a cognitive model of decision-making in a search and rescue task in the Minecraft simulation environment. We demonstrate that cognitive models personalized to individual human players can provide the MToM capability to optimize artificial intelligence agents by diagnosing the underlying causes of observed human behavior, projecting the future effects of potential interventions, and managing the adaptive process of shaping human behavior. Examples of the inputs provided by such analytic cognitive agents include predictions of cognitive load, probability of error, estimates of player self-efficacy, and trust calibration. Finally, we discuss implications for future research and applications to collective human-machine intelligence.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Topics in Cognitive Science
Topics in Cognitive Science PSYCHOLOGY, EXPERIMENTAL-
CiteScore
8.50
自引率
10.00%
发文量
52
期刊介绍: Topics in Cognitive Science (topiCS) is an innovative new journal that covers all areas of cognitive science including cognitive modeling, cognitive neuroscience, cognitive anthropology, and cognitive science and philosophy. topiCS aims to provide a forum for: -New communities of researchers- New controversies in established areas- Debates and commentaries- Reflections and integration The publication features multiple scholarly papers dedicated to a single topic. Some of these topics will appear together in one issue, but others may appear across several issues or develop into a regular feature. Controversies or debates started in one issue may be followed up by commentaries in a later issue, etc. However, the format and origin of the topics will vary greatly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信