{"title":"Three-dimensional heat and moisture transfer analysis for thermal protection of firefighters' gloves with phase change materials.","authors":"Susan S Xu, Jonisha Pollard, Weihuan Zhao","doi":"10.1080/10803548.2024.2424043","DOIUrl":null,"url":null,"abstract":"<p><p>Transient three-dimensional (3D) heat and moisture transfer simulations were conducted to analyze the thermal performances of the entire phase change material (PCM) integrated into firefighters' gloves. PCM was broken down into several segments to cover the back and palm of the hand but to avoid finger joints to keep hand functions. Parametric studies were performed to explore the effects of PCM melting temperatures, PCM locations in the glove and PCM layer thicknesses on the overall thermal performance improvement of firefighters' gloves. The study found that PCM segments could extend the time for hand skin surfaces (areas covered or not covered by PCM) to reach second-degree burn injury (60 °C) by 1.5-2 times compared to conventional firefighters' gloves without PCM. Moreover, PCM segments could help mitigate the temperature increase on hand skin and glove surface after fire exposure.</p>","PeriodicalId":47704,"journal":{"name":"International Journal of Occupational Safety and Ergonomics","volume":" ","pages":"1-17"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Occupational Safety and Ergonomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10803548.2024.2424043","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Transient three-dimensional (3D) heat and moisture transfer simulations were conducted to analyze the thermal performances of the entire phase change material (PCM) integrated into firefighters' gloves. PCM was broken down into several segments to cover the back and palm of the hand but to avoid finger joints to keep hand functions. Parametric studies were performed to explore the effects of PCM melting temperatures, PCM locations in the glove and PCM layer thicknesses on the overall thermal performance improvement of firefighters' gloves. The study found that PCM segments could extend the time for hand skin surfaces (areas covered or not covered by PCM) to reach second-degree burn injury (60 °C) by 1.5-2 times compared to conventional firefighters' gloves without PCM. Moreover, PCM segments could help mitigate the temperature increase on hand skin and glove surface after fire exposure.