Growth characteristics, redox potential changes and proton motive force generation in Thermus scotoductus K1 during growth on various carbon sources.

IF 2.7 Q3 MICROBIOLOGY
AIMS Microbiology Pub Date : 2024-11-22 eCollection Date: 2024-01-01 DOI:10.3934/microbiol.2024045
Hripsime Petrosyan, Karen Trchounian
{"title":"Growth characteristics, redox potential changes and proton motive force generation in <i>Thermus scotoductus</i> K1 during growth on various carbon sources.","authors":"Hripsime Petrosyan, Karen Trchounian","doi":"10.3934/microbiol.2024045","DOIUrl":null,"url":null,"abstract":"<p><p>The extremophile microorganism <i>Thermus scotoductus</i> primarily exhibits aerobic metabolism, though some strains are capable of anaerobic growth, utilizing diverse electron acceptors. We focused on the <i>T. scotoductus</i> K1 strain, exploring its aerobic growth and metabolism, responses to various carbon sources, and characterization of its bioenergetic and physiological properties. The strain grew on different carbon sources, depending on their concentration and the medium's pH, demonstrating adaptability to acidic environments (pH 6.0). It was shown that 4 g L<sup>-1</sup> glucose inhibited the specific growth rate by approximately 4.8-fold and 5.6-fold compared to 1 g L<sup>-1</sup> glucose at pH 8.5 and pH 6.0, respectively. However, this inhibition was not observed in the presence of fructose, galactose, lactose, and starch. Extracellular and intracellular pH variations were mainly alkalifying during growth. At pH 6.0, the membrane potential (ΔΨ) was lower for all carbon sources compared to pH 8.5. The proton motive force (Δp) was lower only during growth on lactose due to the difference in the transmembrane proton gradient (ΔpH). Moreover, at pH 6.0 during growth on lactose, a positive Δp was detected, indicating the cells' ability to employ a unique energy-conserving strategy. Taken together, these findings concluded that <i>Thermus scotoductus</i> K1 exhibits different growth and bioenergetic properties depending on the carbon source, which can be useful for biotechnological applications. These findings offer valuable insights into how bacterial cells function under high-temperature conditions, which is essential for applying bioenergetics knowledge in future biotechnological advancements.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 4","pages":"1052-1067"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2024045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The extremophile microorganism Thermus scotoductus primarily exhibits aerobic metabolism, though some strains are capable of anaerobic growth, utilizing diverse electron acceptors. We focused on the T. scotoductus K1 strain, exploring its aerobic growth and metabolism, responses to various carbon sources, and characterization of its bioenergetic and physiological properties. The strain grew on different carbon sources, depending on their concentration and the medium's pH, demonstrating adaptability to acidic environments (pH 6.0). It was shown that 4 g L-1 glucose inhibited the specific growth rate by approximately 4.8-fold and 5.6-fold compared to 1 g L-1 glucose at pH 8.5 and pH 6.0, respectively. However, this inhibition was not observed in the presence of fructose, galactose, lactose, and starch. Extracellular and intracellular pH variations were mainly alkalifying during growth. At pH 6.0, the membrane potential (ΔΨ) was lower for all carbon sources compared to pH 8.5. The proton motive force (Δp) was lower only during growth on lactose due to the difference in the transmembrane proton gradient (ΔpH). Moreover, at pH 6.0 during growth on lactose, a positive Δp was detected, indicating the cells' ability to employ a unique energy-conserving strategy. Taken together, these findings concluded that Thermus scotoductus K1 exhibits different growth and bioenergetic properties depending on the carbon source, which can be useful for biotechnological applications. These findings offer valuable insights into how bacterial cells function under high-temperature conditions, which is essential for applying bioenergetics knowledge in future biotechnological advancements.

求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信