Zhi-Yu Wang, Qiu Li, Yang-Zhong Zhang, Zhen-Guo Chen, Li Xiao, Yan Luo, Yao-Luo Deng, Dong-Hai Liang, Xiao-Jun Wang
{"title":"[Non-targeted Screening and Ecological Risk Assessment of Emerging Contaminants in Beijiang Drinking Water Source of the Pearl River Delta].","authors":"Zhi-Yu Wang, Qiu Li, Yang-Zhong Zhang, Zhen-Guo Chen, Li Xiao, Yan Luo, Yao-Luo Deng, Dong-Hai Liang, Xiao-Jun Wang","doi":"10.13227/j.hjkx.202311121","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the spatial and temporal distribution characteristics and assess the ecological risks associated with emerging contaminants (ECs) in the Beijiang drinking water source, non-targeted screening was conducted using the ultra-high performance liquid chromatography-mass spectrometry technique (UPLC-MS) for one year (June 2022 to May 2023). This study also involved the quantitative detection of eight typical ECs. The results showed that through the non-targeted screening, a total of 346 pollutants were identified, with industrial materials, pharmaceuticals, and pesticides being the predominant pollutants, collectively accounting for 88.2%. Concentrations of eight representative ECs ranged from n.d (undetected) to 180 ng·L<sup>-1</sup>, with detection rates exceeding 80% for six of them. Notably, higher concentrations were found in endocrine disruptors such as bisphenol A (BPA) and 4-nonylphenol (4-NP), along with the pesticides atrazine (ATZ) and propisochlor (PPS), with median concentrations ranging from 8.12 to 35.58 ng·L<sup>-1</sup>. The concentrations of ATZ, PPS, roxithromycin (ROX), and ibuprofen (IBU) were significantly higher in the spring season compared to those in other seasons (<i>P</i><0.05). Elevated ecological risk levels (RQ>1) were observed at sampling point 1 (S1) and sampling point 3 (S3) for ATZ and Lomefloxacin (LOM), while for 4-NP, it was determined to be high only at sampling site 2 (S2). Given their high detection rates and ecotoxicity, particular attention should be paid to ATZ and 4-NP. The concentration level of ATZ exhibited significant seasonal variation due to its agricultural origin, so it is recommended to strengthen control during spring. Overall, this research provides critical insights into a comprehensive understanding of the presence and impact of ECs in this specific region.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"45 11","pages":"6555-6564"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202311121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the spatial and temporal distribution characteristics and assess the ecological risks associated with emerging contaminants (ECs) in the Beijiang drinking water source, non-targeted screening was conducted using the ultra-high performance liquid chromatography-mass spectrometry technique (UPLC-MS) for one year (June 2022 to May 2023). This study also involved the quantitative detection of eight typical ECs. The results showed that through the non-targeted screening, a total of 346 pollutants were identified, with industrial materials, pharmaceuticals, and pesticides being the predominant pollutants, collectively accounting for 88.2%. Concentrations of eight representative ECs ranged from n.d (undetected) to 180 ng·L-1, with detection rates exceeding 80% for six of them. Notably, higher concentrations were found in endocrine disruptors such as bisphenol A (BPA) and 4-nonylphenol (4-NP), along with the pesticides atrazine (ATZ) and propisochlor (PPS), with median concentrations ranging from 8.12 to 35.58 ng·L-1. The concentrations of ATZ, PPS, roxithromycin (ROX), and ibuprofen (IBU) were significantly higher in the spring season compared to those in other seasons (P<0.05). Elevated ecological risk levels (RQ>1) were observed at sampling point 1 (S1) and sampling point 3 (S3) for ATZ and Lomefloxacin (LOM), while for 4-NP, it was determined to be high only at sampling site 2 (S2). Given their high detection rates and ecotoxicity, particular attention should be paid to ATZ and 4-NP. The concentration level of ATZ exhibited significant seasonal variation due to its agricultural origin, so it is recommended to strengthen control during spring. Overall, this research provides critical insights into a comprehensive understanding of the presence and impact of ECs in this specific region.