[Impact of Change in Meteorological Conditions on PM2.5 Air Quality Improvement in Beijing-Tianjin-Hebei Region Using Process Analysis].

Q2 Environmental Science
Guo-Bin Zhang, Jing-Yuan Cao, Xiong-Hui Qiu, Lin Peng
{"title":"[Impact of Change in Meteorological Conditions on PM<sub>2.5</sub> Air Quality Improvement in Beijing-Tianjin-Hebei Region Using Process Analysis].","authors":"Guo-Bin Zhang, Jing-Yuan Cao, Xiong-Hui Qiu, Lin Peng","doi":"10.13227/j.hjkx.202310234","DOIUrl":null,"url":null,"abstract":"<p><p>The air quality has significantly improved since the implementation of the Air Pollution Prevention and Control Action Plan in 2013. The effect of meteorological conditions on air quality improvement is complex, including affecting the emission, transport, diffusion, chemical transformation, and other processes of air pollutants. Based on the WRF-CMAQ model and process analysis (PA) tool, this study evaluates the impact of meteorological factor changes on the improvement of PM<sub>2.5</sub> concentration in the Beijing-Tianjin-Hebei Region from 2013 to 2020 and further analyzes the role of meteorological conditions on the diffusion, transport, and transformation of atmospheric pollutants. The results provided the technical support for improving air quality in China. The changed meteorological conditions resulted in the PM<sub>2.5</sub> concentration decreasing by 5.4 μg·m<sup>-3</sup> during the 2013-2017 period and increasing by 11.6 μg·m<sup>-3</sup> from 2017-2020. From 2013 to 2017, aerosol chemical processes, vertical transmission, and horizontal transmission processes were the main processes affecting the PM<sub>2.5</sub> improvement. Conversely, the change in meteorological conditions contributed little to the reduction of PM<sub>2.5</sub> level, which is mainly affected by aerosol chemical processes, horizontal transmission, and vertical transmission.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"45 11","pages":"6219-6228"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202310234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The air quality has significantly improved since the implementation of the Air Pollution Prevention and Control Action Plan in 2013. The effect of meteorological conditions on air quality improvement is complex, including affecting the emission, transport, diffusion, chemical transformation, and other processes of air pollutants. Based on the WRF-CMAQ model and process analysis (PA) tool, this study evaluates the impact of meteorological factor changes on the improvement of PM2.5 concentration in the Beijing-Tianjin-Hebei Region from 2013 to 2020 and further analyzes the role of meteorological conditions on the diffusion, transport, and transformation of atmospheric pollutants. The results provided the technical support for improving air quality in China. The changed meteorological conditions resulted in the PM2.5 concentration decreasing by 5.4 μg·m-3 during the 2013-2017 period and increasing by 11.6 μg·m-3 from 2017-2020. From 2013 to 2017, aerosol chemical processes, vertical transmission, and horizontal transmission processes were the main processes affecting the PM2.5 improvement. Conversely, the change in meteorological conditions contributed little to the reduction of PM2.5 level, which is mainly affected by aerosol chemical processes, horizontal transmission, and vertical transmission.

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信