[Research Progress on the Efficiency and Mechanism of Iron-based Materials for Enhancing Anaerobic Digestion of Municipal Sludge].

Q2 Environmental Science
Long-Yi Lü, Meng-Ting Jin, Zi-Yin Wei, Wen-Fang Gao, Li Sun
{"title":"[Research Progress on the Efficiency and Mechanism of Iron-based Materials for Enhancing Anaerobic Digestion of Municipal Sludge].","authors":"Long-Yi Lü, Meng-Ting Jin, Zi-Yin Wei, Wen-Fang Gao, Li Sun","doi":"10.13227/j.hjkx.202312066","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving effective treatment and resource reuse of municipal sludge is a worthwhile research issue. Currently, anaerobic digestion treatment is an effective way to achieve the resource utilization of municipal sludge. However, due to the slow start-up, poor stability and low gas production efficiency of anaerobic digestion systems, sludge anaerobic digestion faces many challenges in practical engineering applications. Iron-based material has been proven to be a good conductive material for promoting anaerobic digestion of municipal sludge. On the basis of previous studies, this article summarized the effects of different iron-based materials on anaerobic digestion of municipal sludge. Simultaneously, from the perspectives of alleviating toxic substance inhibition, enhancing microbial metabolism, and promoting electron transfer between symbiotic microorganisms, the mechanism of iron-based materials enhancing anaerobic digestion of municipal sludge was summarized. The mechanism of direct interspecific electron transfer mediated by iron-based materials in enhancing anaerobic digestion of municipal sludge was described, and the research direction of iron-based materials enhancing anaerobic digestion of municipal sludge was prospected.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"45 11","pages":"6713-6722"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202312066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving effective treatment and resource reuse of municipal sludge is a worthwhile research issue. Currently, anaerobic digestion treatment is an effective way to achieve the resource utilization of municipal sludge. However, due to the slow start-up, poor stability and low gas production efficiency of anaerobic digestion systems, sludge anaerobic digestion faces many challenges in practical engineering applications. Iron-based material has been proven to be a good conductive material for promoting anaerobic digestion of municipal sludge. On the basis of previous studies, this article summarized the effects of different iron-based materials on anaerobic digestion of municipal sludge. Simultaneously, from the perspectives of alleviating toxic substance inhibition, enhancing microbial metabolism, and promoting electron transfer between symbiotic microorganisms, the mechanism of iron-based materials enhancing anaerobic digestion of municipal sludge was summarized. The mechanism of direct interspecific electron transfer mediated by iron-based materials in enhancing anaerobic digestion of municipal sludge was described, and the research direction of iron-based materials enhancing anaerobic digestion of municipal sludge was prospected.

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信