[Characterization of the Community Structure of Rhizosphere Soil and Root-endophytic Bacteria in Different Shrubs].

Q2 Environmental Science
Jian-Hua Hao, Xiu-Juan Zhang, Jun-Jian Li
{"title":"[Characterization of the Community Structure of Rhizosphere Soil and Root-endophytic Bacteria in Different Shrubs].","authors":"Jian-Hua Hao, Xiu-Juan Zhang, Jun-Jian Li","doi":"10.13227/j.hjkx.202311212","DOIUrl":null,"url":null,"abstract":"<p><p>In the process of ecological restoration, vegetation plays a crucial role in restoring ecosystem functions. Soil microorganisms are essential components of soil ecosystems, driving material cycling processes and enhancing plant productivity and resilience. This study aimed to investigate the community structure characteristics of rhizosphere soil and root-endophytic bacteria in different shrubs. Specifically, the composition of rhizosphere soil and root-endophytic bacteria in <i>Cotoneaster acutifolius Turcz., Lonicera japonica Thunb.</i>, and <i>Cornus alba L.</i> in the loess hilly area of northwest Shanxi was determined using Illumina high-throughput sequencing technology. The results revealed that the dominant phyla of rhizosphere soil bacteria and root-endophytic bacteria in different shrubs were Proteobacteria and Actinobacteria. Additionally, the genera of rhizosphere soil and root-endophytic bacteria differed. Furthermore, the species richness and diversity index of rhizosphere soil bacteria were significantly higher than those of root-endophytic bacteria (<i>P</i> &lt; 0.05). It was also observed that approximately 64% of the root-endophytic bacteria in the shrubs were present in the rhizosphere soil bacteria, indicating similarity in the bacterial community compositions of different niches. Redundancy analysis (RDA) and Pearson correlation analysis revealed that soil dehydrogenase, soil <i>N</i>-acetyl-<i>β</i>-D glucosidase, alkaline protease, pH, and total phosphorus were the main influencing factors on the bacterial community structures in root-endophytic bacteria (<i>P</i> &lt; 0.05), while alkaline protease, pH, total carbon, and total nitrogen significantly impacted rhizosphere soil community structures (<i>P</i> &lt; 0.05). Additionally, the partial least squares path model (PLS-PM) indicated that vegetation could directly affect bacterial communities and indirectly affect them by influencing soil physicochemical properties and soil enzyme activity. In conclusion, the findings of this study provide a theoretical foundation for further research on the relationship between endophytic bacteria and resistance in shrubs.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"45 11","pages":"6756-6765"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202311212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

In the process of ecological restoration, vegetation plays a crucial role in restoring ecosystem functions. Soil microorganisms are essential components of soil ecosystems, driving material cycling processes and enhancing plant productivity and resilience. This study aimed to investigate the community structure characteristics of rhizosphere soil and root-endophytic bacteria in different shrubs. Specifically, the composition of rhizosphere soil and root-endophytic bacteria in Cotoneaster acutifolius Turcz., Lonicera japonica Thunb., and Cornus alba L. in the loess hilly area of northwest Shanxi was determined using Illumina high-throughput sequencing technology. The results revealed that the dominant phyla of rhizosphere soil bacteria and root-endophytic bacteria in different shrubs were Proteobacteria and Actinobacteria. Additionally, the genera of rhizosphere soil and root-endophytic bacteria differed. Furthermore, the species richness and diversity index of rhizosphere soil bacteria were significantly higher than those of root-endophytic bacteria (P < 0.05). It was also observed that approximately 64% of the root-endophytic bacteria in the shrubs were present in the rhizosphere soil bacteria, indicating similarity in the bacterial community compositions of different niches. Redundancy analysis (RDA) and Pearson correlation analysis revealed that soil dehydrogenase, soil N-acetyl-β-D glucosidase, alkaline protease, pH, and total phosphorus were the main influencing factors on the bacterial community structures in root-endophytic bacteria (P < 0.05), while alkaline protease, pH, total carbon, and total nitrogen significantly impacted rhizosphere soil community structures (P < 0.05). Additionally, the partial least squares path model (PLS-PM) indicated that vegetation could directly affect bacterial communities and indirectly affect them by influencing soil physicochemical properties and soil enzyme activity. In conclusion, the findings of this study provide a theoretical foundation for further research on the relationship between endophytic bacteria and resistance in shrubs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信