[Innovative Personalized Medicine for Immunosuppressive Drugs Based on Novel Control Theory of Pharmacokinetics].

IF 0.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Naoki Yoshikawa
{"title":"[Innovative Personalized Medicine for Immunosuppressive Drugs Based on Novel Control Theory of Pharmacokinetics].","authors":"Naoki Yoshikawa","doi":"10.1248/yakushi.24-00140","DOIUrl":null,"url":null,"abstract":"<p><p>Tacrolimus is widely recognized as an anti-rejection agent due to its immunosuppressive characteristics. It binds to the immunophilin FK506-binding protein (FKBP) and thus to calcineurin, and inhibits its activity. Tacrolimus' therapeutic concentration range in blood is narrow, and its pharmacokinetics are highly variable among individuals. First, because tacrolimus primarily distributes to red blood cells (RBCs), anemia and blood transfusions can cause fluctuations in tacrolimus blood concentrations. Variations in blood tacrolimus concentration significantly correlated with variations in RBC count, hemoglobin level, and hematocrit value, but not with variations in white blood cell or platelet counts. Interestingly, FKBP played an important role in tacrolimus distribution to RBCs. The effects of intracellular and extracellular FKBP levels on RBC distribution of tacrolimus in circulating blood were substantial. Secondly, proteins affecting pharmacokinetics can differ at the genetic level in their expression and functional potency. Genetic polymorphisms that influence tacrolimus pharmacokinetics have been reported. A polymorphism in the gene encoding the metabolic enzyme cytochrome P450 (CYP) 3A5 is a particularly influential factor affecting tacrolimus pharmacokinetics in Japanese patients. CYP3A5 polymorphisms correlated with individual differences in tacrolimus blood concentration changes after starting continuous infusion in allogeneic hematopoietic stem cell transplantation (HSCT) recipients. In addition, CYP3A5*3 polymorphism also correlated with differences in the frequency of acute graft-versus-host disease (GVHD) development in allogeneic HSCT recipients.</p>","PeriodicalId":23810,"journal":{"name":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","volume":"144 12","pages":"1075-1080"},"PeriodicalIF":0.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/yakushi.24-00140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Tacrolimus is widely recognized as an anti-rejection agent due to its immunosuppressive characteristics. It binds to the immunophilin FK506-binding protein (FKBP) and thus to calcineurin, and inhibits its activity. Tacrolimus' therapeutic concentration range in blood is narrow, and its pharmacokinetics are highly variable among individuals. First, because tacrolimus primarily distributes to red blood cells (RBCs), anemia and blood transfusions can cause fluctuations in tacrolimus blood concentrations. Variations in blood tacrolimus concentration significantly correlated with variations in RBC count, hemoglobin level, and hematocrit value, but not with variations in white blood cell or platelet counts. Interestingly, FKBP played an important role in tacrolimus distribution to RBCs. The effects of intracellular and extracellular FKBP levels on RBC distribution of tacrolimus in circulating blood were substantial. Secondly, proteins affecting pharmacokinetics can differ at the genetic level in their expression and functional potency. Genetic polymorphisms that influence tacrolimus pharmacokinetics have been reported. A polymorphism in the gene encoding the metabolic enzyme cytochrome P450 (CYP) 3A5 is a particularly influential factor affecting tacrolimus pharmacokinetics in Japanese patients. CYP3A5 polymorphisms correlated with individual differences in tacrolimus blood concentration changes after starting continuous infusion in allogeneic hematopoietic stem cell transplantation (HSCT) recipients. In addition, CYP3A5*3 polymorphism also correlated with differences in the frequency of acute graft-versus-host disease (GVHD) development in allogeneic HSCT recipients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
169
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信