[Calculation and Evolution of Traffic Carbon Emission in a Mixed Traffic Environment].

Q2 Environmental Science
Shu-Hong Ma, Chao-Jie Duan, Lei Yang, Xue-Zhen Dai
{"title":"[Calculation and Evolution of Traffic Carbon Emission in a Mixed Traffic Environment].","authors":"Shu-Hong Ma, Chao-Jie Duan, Lei Yang, Xue-Zhen Dai","doi":"10.13227/j.hjkx.202312108","DOIUrl":null,"url":null,"abstract":"<p><p>With the extensive use of electric vehicles, it is of great significance to measure traffic carbon emissions and analyze its evolution law under the mixed traffic environment in order to effectively achieve traffic carbon reduction. Utilizing taxi GPS data from 2016, 2018, 2020, and 2022, we assessed the carbon emission levels of taxis in Xi'an and matched the results to a grid using map matching. The K-means algorithm was used to analyze the spatial clustering and spatial-temporal distribution of carbon emissions, and the gradient boosting iterative decision tree model (GBDT) was used to explore the influence of built environments on carbon emissions. The results showed that: Weekend carbon emissions were greater than weekday emissions in all years, and the difference between weekend and weekday carbon emissions decreased year by year with the increase in the proportion of electric cabs. The overall weekend carbon emissions in 2022 decreased by approximately 56%, and the overall weekday carbon emissions decreased by approximately 40% compared to those in 2016. The carbon emission region in Xi'an had experienced an evolution from a region-wide ring-shaped distribution in 2016 to 2022. The evolution process of the ring-shaped distribution of peripheral low-carbon emission regions, partial reticulation of medium-carbon emission regions, and reticulation of high-carbon emission regions. From the importance analysis of built environmental factors, it could be seen that residential land and population density had relatively high importance for carbon emissions in each year. The importance of public facilities land was higher on weekdays than that on weekends, while the importance of leisure and entertainment land was higher on weekends than that on weekdays. This work reveals the spatial and temporal distribution evolution of carbon emissions, which can provide a reference for the control and management of transportation carbon emissions under the mixed traffic state.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"45 11","pages":"6403-6411"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202312108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

With the extensive use of electric vehicles, it is of great significance to measure traffic carbon emissions and analyze its evolution law under the mixed traffic environment in order to effectively achieve traffic carbon reduction. Utilizing taxi GPS data from 2016, 2018, 2020, and 2022, we assessed the carbon emission levels of taxis in Xi'an and matched the results to a grid using map matching. The K-means algorithm was used to analyze the spatial clustering and spatial-temporal distribution of carbon emissions, and the gradient boosting iterative decision tree model (GBDT) was used to explore the influence of built environments on carbon emissions. The results showed that: Weekend carbon emissions were greater than weekday emissions in all years, and the difference between weekend and weekday carbon emissions decreased year by year with the increase in the proportion of electric cabs. The overall weekend carbon emissions in 2022 decreased by approximately 56%, and the overall weekday carbon emissions decreased by approximately 40% compared to those in 2016. The carbon emission region in Xi'an had experienced an evolution from a region-wide ring-shaped distribution in 2016 to 2022. The evolution process of the ring-shaped distribution of peripheral low-carbon emission regions, partial reticulation of medium-carbon emission regions, and reticulation of high-carbon emission regions. From the importance analysis of built environmental factors, it could be seen that residential land and population density had relatively high importance for carbon emissions in each year. The importance of public facilities land was higher on weekdays than that on weekends, while the importance of leisure and entertainment land was higher on weekends than that on weekdays. This work reveals the spatial and temporal distribution evolution of carbon emissions, which can provide a reference for the control and management of transportation carbon emissions under the mixed traffic state.

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信