[Atmospheric HONO Concentration Levels and Generation Mechanisms in Nanjing in Winter and Summer].

Q2 Environmental Science
Yi Zhang, Fang Cao, Mei-Yi Fan, Yan-Kun Xiang, Han-Yu Li, Yong-Wen Xue, Yan-Lin Zhang
{"title":"[Atmospheric HONO Concentration Levels and Generation Mechanisms in Nanjing in Winter and Summer].","authors":"Yi Zhang, Fang Cao, Mei-Yi Fan, Yan-Kun Xiang, Han-Yu Li, Yong-Wen Xue, Yan-Lin Zhang","doi":"10.13227/j.hjkx.202312145","DOIUrl":null,"url":null,"abstract":"<p><p>HONO, or gaseous nitrous acid, has a significant impact on air quality and climate. An atmospheric gaseous nitrous acid (HONO) observation study was carried out in December 2021 (winter) and July 2022 (summer) in the Jiangbei New District of Nanjing City, respectively. Using the HONO concentration observation data, combined with the atmospheric NO<i><sub>x</sub></i> and O<sub>3</sub> concentrations during the sampling period as well as the reaction rate of the HONO generation process and other parameters, we compared and analyzed the change rule of the atmospheric HONO concentration during winter and summer in the Nanjing area, quantitatively investigated the sources of diurnal atmospheric HONO and its generation mechanism, and explored the unknown sources of atmospheric HONO during the daytime. The results showed that the mean value of atmospheric <i>ρ</i>(HONO) in the Nanjing area during winter was (2.2±1.1) μg·m<sup>-3</sup>, which was 3.0 times the average concentration [(0.72±0.45) μg·m<sup>-3</sup>] during summer. The atmospheric HONO concentrations during winter and summer showed a significant daily pattern of low during the daytime and high at nighttime. Based on the reaction rates of different HONO generation pathways, it was calculated that the non-homogeneous reaction of NO<sub>2</sub> was the main pathway of atmospheric HONO generation at night in Nanjing. The analysis of the atmospheric HONO balance during the daytime showed that there existed an important unknown source of HONO during the daytime (<i>P</i><sub>unknown</sub>), and its contribution to the daytime atmospheric HONO concentration was 69% during winter and 47% during summer, respectively. The results of correlation analysis showed that <i>P</i><sub>unknown</sub> was related to the light-catalyzed reaction of NO<sub>2</sub> during the daytime.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"45 11","pages":"6286-6293"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202312145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

HONO, or gaseous nitrous acid, has a significant impact on air quality and climate. An atmospheric gaseous nitrous acid (HONO) observation study was carried out in December 2021 (winter) and July 2022 (summer) in the Jiangbei New District of Nanjing City, respectively. Using the HONO concentration observation data, combined with the atmospheric NOx and O3 concentrations during the sampling period as well as the reaction rate of the HONO generation process and other parameters, we compared and analyzed the change rule of the atmospheric HONO concentration during winter and summer in the Nanjing area, quantitatively investigated the sources of diurnal atmospheric HONO and its generation mechanism, and explored the unknown sources of atmospheric HONO during the daytime. The results showed that the mean value of atmospheric ρ(HONO) in the Nanjing area during winter was (2.2±1.1) μg·m-3, which was 3.0 times the average concentration [(0.72±0.45) μg·m-3] during summer. The atmospheric HONO concentrations during winter and summer showed a significant daily pattern of low during the daytime and high at nighttime. Based on the reaction rates of different HONO generation pathways, it was calculated that the non-homogeneous reaction of NO2 was the main pathway of atmospheric HONO generation at night in Nanjing. The analysis of the atmospheric HONO balance during the daytime showed that there existed an important unknown source of HONO during the daytime (Punknown), and its contribution to the daytime atmospheric HONO concentration was 69% during winter and 47% during summer, respectively. The results of correlation analysis showed that Punknown was related to the light-catalyzed reaction of NO2 during the daytime.

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信