Impacts of trophic interactions on carbon accrual in soils.

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaoyue Wang, Chao Liang, Francisco Dini-Andreote, Shungui Zhou, Yuji Jiang
{"title":"Impacts of trophic interactions on carbon accrual in soils.","authors":"Xiaoyue Wang, Chao Liang, Francisco Dini-Andreote, Shungui Zhou, Yuji Jiang","doi":"10.1016/j.tim.2024.10.009","DOIUrl":null,"url":null,"abstract":"<p><p>The transformation and stabilization of soil organic carbon (SOC) are important processes of global carbon (C) cycling, with implications for climate change. Much attention has been given to microbial anabolic processes driving SOC accrual. These are referred to as the soil microbial carbon pump (MCP), which emphasizes the contribution of microbial metabolism and necromass to the stable soil C pool. However, we still lack a fundamental understanding of how trophic interactions between soil fauna and microbiota modulate microbial necromass production and, consequently, SOC formation. Here, we provide an ecological perspective on the impacts of trophic interactions on modulating necromass formation and C accrual in soils. We discuss the mechanisms of trophic interactions in the context of food web ecology, with a focus on trophic control of microbial population densities and their influences on soil microbiota assembly. We foresee that integrating trophic interactions into the soil MCP framework can provide a more comprehensive basis for guiding future research efforts to elucidate the mechanisms modulating microbial necromass and SOC formation in terrestrial ecosystems. This perspective offers an ecological foundation for leveraging the use of biological interventions to enhance SOC accrual, providing valuable insights for sustainable C management strategies.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.10.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transformation and stabilization of soil organic carbon (SOC) are important processes of global carbon (C) cycling, with implications for climate change. Much attention has been given to microbial anabolic processes driving SOC accrual. These are referred to as the soil microbial carbon pump (MCP), which emphasizes the contribution of microbial metabolism and necromass to the stable soil C pool. However, we still lack a fundamental understanding of how trophic interactions between soil fauna and microbiota modulate microbial necromass production and, consequently, SOC formation. Here, we provide an ecological perspective on the impacts of trophic interactions on modulating necromass formation and C accrual in soils. We discuss the mechanisms of trophic interactions in the context of food web ecology, with a focus on trophic control of microbial population densities and their influences on soil microbiota assembly. We foresee that integrating trophic interactions into the soil MCP framework can provide a more comprehensive basis for guiding future research efforts to elucidate the mechanisms modulating microbial necromass and SOC formation in terrestrial ecosystems. This perspective offers an ecological foundation for leveraging the use of biological interventions to enhance SOC accrual, providing valuable insights for sustainable C management strategies.

营养相互作用对土壤碳积累的影响。
土壤有机碳(SOC)的转化和稳定是全球碳循环的重要过程,对气候变化具有重要影响。微生物合成代谢过程驱动有机碳积累引起了广泛的关注。这些被称为土壤微生物碳泵(MCP),它强调微生物代谢和坏死块对稳定的土壤碳库的贡献。然而,我们仍然缺乏对土壤动物和微生物群之间的营养相互作用如何调节微生物坏死物的产生,从而影响有机碳形成的基本理解。在这里,我们从生态学的角度对营养相互作用对调节土壤坏死物形成和C积累的影响进行了研究。我们讨论了食物网生态背景下的营养相互作用机制,重点关注微生物种群密度的营养控制及其对土壤微生物群组合的影响。我们预计,将营养相互作用纳入土壤MCP框架可以为指导未来研究阐明陆地生态系统微生物坏死和有机碳形成的调节机制提供更全面的基础。这一观点为利用生物干预措施提高SOC积累提供了生态学基础,为可持续碳管理策略提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信