{"title":"PPB-Affinity: Protein-Protein Binding Affinity dataset for AI-based protein drug discovery.","authors":"Huaqing Liu, Peiyi Chen, Xiaochen Zhai, Ku-Geng Huo, Shuxian Zhou, Lanqing Han, Guoxin Fan","doi":"10.1038/s41597-024-03997-4","DOIUrl":null,"url":null,"abstract":"<p><p>Prediction of protein-protein binding (PPB) affinity plays an important role in large-molecular drug discovery. Deep learning (DL) has been adopted to predict the changes of PPB binding affinities upon mutations, but there was a scarcity of studies predicting the PPB affinity itself. The major reason is the paucity of open-source dataset with PPB affinity data. To address this gap, the current study introduced a large comprehensive PPB affinity (PPB-Affinity) dataset. The PPB-Affinity dataset contains key information such as crystal structures of protein-protein complexes (with or without protein mutation patterns), PPB affinity, receptor protein chain, ligand protein chain, etc. To the best of our knowledge, this is the largest publicly available PPB affinity dataset, and we believe it will significantly advance drug discovery by streamlining the screening of potential large-molecule drugs. We also developed a deep-learning benchmark model with this dataset to predict the PPB affinity, providing a foundational comparison for the research community.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1316"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-03997-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction of protein-protein binding (PPB) affinity plays an important role in large-molecular drug discovery. Deep learning (DL) has been adopted to predict the changes of PPB binding affinities upon mutations, but there was a scarcity of studies predicting the PPB affinity itself. The major reason is the paucity of open-source dataset with PPB affinity data. To address this gap, the current study introduced a large comprehensive PPB affinity (PPB-Affinity) dataset. The PPB-Affinity dataset contains key information such as crystal structures of protein-protein complexes (with or without protein mutation patterns), PPB affinity, receptor protein chain, ligand protein chain, etc. To the best of our knowledge, this is the largest publicly available PPB affinity dataset, and we believe it will significantly advance drug discovery by streamlining the screening of potential large-molecule drugs. We also developed a deep-learning benchmark model with this dataset to predict the PPB affinity, providing a foundational comparison for the research community.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.