Kyungwon Min, Syahril Sulaiman, Jihye Jeong, Hyodong Lee, Jungeun Lee, Jun Hyuck Lee, Hyoungseok Lee
{"title":"Exploring the mechanisms underlying recovery from freeze-thaw injury in Colobanthus quitensis: mechanistic insights via transcriptome profiling.","authors":"Kyungwon Min, Syahril Sulaiman, Jihye Jeong, Hyodong Lee, Jungeun Lee, Jun Hyuck Lee, Hyoungseok Lee","doi":"10.1111/ppl.14642","DOIUrl":null,"url":null,"abstract":"<p><p>Antarctic plants face significant challenges due to exposure to freeze-thaw stress throughout their life cycle. The ability to recover from freeze-thaw injuries during post-thaw recovery (PTR) periods is a crucial skill for their survival and growth. However, no research, to the best our knowledge, has explored their recovery mechanisms at the cellular and molecular levels. To investigate the potential cellular mechanism during PTR periods, we focused on Colobanthus quitensis, one of solely two vascular plant species in the Antarctic Peninsula. Having determined the lethal temperature causing 50% cellular injury (LT<sub>50</sub>) under freezing to be -8.0°C, we subjected plants to sub-injurious (-7.0°C) and injurious (-9.0°C) freezing treatments. We then compared recovery abilities at these stress levels using physiological indicators such as ion-leakage, PSII quantum efficiency (Fv/Fm), and antioxidant enzyme activities. Comparative analysis indicated that plants exposed to -7.0°C progressively recovered during PTR periods, showing reduced ion-leakage and increased Fv/Fm, while those stressed at -9.0°C exhibited irrecoverable damage with lower antioxidant enzymes activities. To investigate the molecular basis of recovery, we examined transcriptome changes in tissues exposed to -7.0°C during PTR periods through GO and KEGG pathway enrichment analyses. These analyses identified six potential cellular events involved in the recovery process, including ionic & pH homeostasis, cell wall remodeling, protein repair, defense against potential microbial attacks, free radical scavenging, and DNA repair. Understanding the cellular and molecular mechanisms of recovery from freeze-thaw injuries enhances our knowledge on how Antarctic plants adapt to extreme environments, offering valuable insights into their survival strategies.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14642"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14642","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antarctic plants face significant challenges due to exposure to freeze-thaw stress throughout their life cycle. The ability to recover from freeze-thaw injuries during post-thaw recovery (PTR) periods is a crucial skill for their survival and growth. However, no research, to the best our knowledge, has explored their recovery mechanisms at the cellular and molecular levels. To investigate the potential cellular mechanism during PTR periods, we focused on Colobanthus quitensis, one of solely two vascular plant species in the Antarctic Peninsula. Having determined the lethal temperature causing 50% cellular injury (LT50) under freezing to be -8.0°C, we subjected plants to sub-injurious (-7.0°C) and injurious (-9.0°C) freezing treatments. We then compared recovery abilities at these stress levels using physiological indicators such as ion-leakage, PSII quantum efficiency (Fv/Fm), and antioxidant enzyme activities. Comparative analysis indicated that plants exposed to -7.0°C progressively recovered during PTR periods, showing reduced ion-leakage and increased Fv/Fm, while those stressed at -9.0°C exhibited irrecoverable damage with lower antioxidant enzymes activities. To investigate the molecular basis of recovery, we examined transcriptome changes in tissues exposed to -7.0°C during PTR periods through GO and KEGG pathway enrichment analyses. These analyses identified six potential cellular events involved in the recovery process, including ionic & pH homeostasis, cell wall remodeling, protein repair, defense against potential microbial attacks, free radical scavenging, and DNA repair. Understanding the cellular and molecular mechanisms of recovery from freeze-thaw injuries enhances our knowledge on how Antarctic plants adapt to extreme environments, offering valuable insights into their survival strategies.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.