{"title":"Comprehensive assessment of supratentorial and infratentorial volumes in infants with myelomeningocele with and without Chiari malformation type II.","authors":"Hiroaki Hashimoto, Makoto Shimada, Osamu Takemoto, Yasuyoshi Chiba","doi":"10.1007/s00234-024-03514-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Chiari malformation type II (CM-II) is a congenital anomaly commonly associated with myelomeningocele (MMC), a severe form of open spina dysraphism. This study aimed to evaluate both supratentorial and infratentorial volumes in MMC infants with and without CM-II.</p><p><strong>Methods: </strong>We conducted a single-center, retrospective study of 52 MMC infants treated between April 2006 and July 2023. Infants were classified as non-CM-II or CM-II based on the presence of cerebellar displacement. All patients underwent computed tomography (CT) at 0 months of age. Volumetric parameters included intracranial volume (ICV), lateral ventricles volume (LVV), posterior cranial fossa volume (PCFV), cerebellum volume (CBMV), and brainstem volume (BSV). LVV represented supratentorial structures, while PCFV, CBMV, and BSV represented infratentorial structures.</p><p><strong>Results: </strong>CM-II was diagnosed in 30 infants (57.7%). Correlation analysis revealed significant negative correlations between supratentorial (LVV) and infratentorial volumes (PCFV, CBMV, and BSV), and positive correlations among volumes within the same space(e.g., PCFV, CBMV, and BSV). CM-II infants exhibited significantly larger ICV (p = 0.04) and LVV (p < 0.001), but smaller PCFV (p < 0.001) and CBMV (p < 0.001) than non-CM-II infants. LVV was the best predictor for distinguishing non-CM-II from CM-II (area under the curve = 0.91).</p><p><strong>Conclusion: </strong>This study identified positive correlations within the same space and negative correlations between supratentorial and infratentorial volumes. LVV emerged as a critical indicator of CM-II, reflecting the relationship between reduced infratentorial space and enlarged supratentorial ventricles (hydrocephalus). These findings provide insights into the pathophysiology and clinical implications of CM-II in MMC patients.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03514-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Chiari malformation type II (CM-II) is a congenital anomaly commonly associated with myelomeningocele (MMC), a severe form of open spina dysraphism. This study aimed to evaluate both supratentorial and infratentorial volumes in MMC infants with and without CM-II.
Methods: We conducted a single-center, retrospective study of 52 MMC infants treated between April 2006 and July 2023. Infants were classified as non-CM-II or CM-II based on the presence of cerebellar displacement. All patients underwent computed tomography (CT) at 0 months of age. Volumetric parameters included intracranial volume (ICV), lateral ventricles volume (LVV), posterior cranial fossa volume (PCFV), cerebellum volume (CBMV), and brainstem volume (BSV). LVV represented supratentorial structures, while PCFV, CBMV, and BSV represented infratentorial structures.
Results: CM-II was diagnosed in 30 infants (57.7%). Correlation analysis revealed significant negative correlations between supratentorial (LVV) and infratentorial volumes (PCFV, CBMV, and BSV), and positive correlations among volumes within the same space(e.g., PCFV, CBMV, and BSV). CM-II infants exhibited significantly larger ICV (p = 0.04) and LVV (p < 0.001), but smaller PCFV (p < 0.001) and CBMV (p < 0.001) than non-CM-II infants. LVV was the best predictor for distinguishing non-CM-II from CM-II (area under the curve = 0.91).
Conclusion: This study identified positive correlations within the same space and negative correlations between supratentorial and infratentorial volumes. LVV emerged as a critical indicator of CM-II, reflecting the relationship between reduced infratentorial space and enlarged supratentorial ventricles (hydrocephalus). These findings provide insights into the pathophysiology and clinical implications of CM-II in MMC patients.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.