MicroRNA signature for early prediction of knee osteoarthritis structural progression using integrated machine and deep learning approaches

IF 7.2 2区 医学 Q1 ORTHOPEDICS
Afshin Jamshidi , Osvaldo Espin-Garcia , Thomas G. Wilson , Ian Loveless , Jean-Pierre Pelletier , Johanne Martel-Pelletier , Shabana Amanda Ali
{"title":"MicroRNA signature for early prediction of knee osteoarthritis structural progression using integrated machine and deep learning approaches","authors":"Afshin Jamshidi ,&nbsp;Osvaldo Espin-Garcia ,&nbsp;Thomas G. Wilson ,&nbsp;Ian Loveless ,&nbsp;Jean-Pierre Pelletier ,&nbsp;Johanne Martel-Pelletier ,&nbsp;Shabana Amanda Ali","doi":"10.1016/j.joca.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Conventional methodologies are ineffective in predicting the rapid progression of knee osteoarthritis (OA). MicroRNAs (miRNAs) show promise as biomarkers for patient stratification. We aimed to develop a miRNA prognosis model for identifying knee OA structural progressors/non-progressors using integrated machine/deep learning tools.</div></div><div><h3>Methods</h3><div>Baseline serum miRNAs from Osteoarthritis Initiative (OAI) participants were isolated and sequenced. Participants were categorized based on their likelihood of knee structural progression/non-progression using magnetic resonance imaging and X-ray data. For prediction model development, 152 OAI participants (91 progressors, 61 non-progressors) were used. MiRNA features were reduced through VarClusHi clustering. Key miRNAs and OA determinants (age, sex, body mass index, race) were identified using seven machine learning tools. The final prediction model was developed using advanced machine/deep learning techniques. Model performance was assessed with area under the curve (AUC) (95% confidence intervals) and accuracy. Monte Carlo cross-validation ensured robustness. Model validation used 30 OAI baseline plasma samples from an independent set of participants (14 progressors, 16 non-progressors).</div></div><div><h3>Results</h3><div>Feature clustering selected 107 miRNAs. Elastic Net was chosen for feature selection. An optimized prediction model based on an Artificial Neural Network comprising age and four miRNAs (hsa-miR-556-3p, hsa-miR-3157-5p, hsa-miR-200a-5p, hsa-miR-141-3p) exhibited excellent performance (AUC, 0.94 [0.89, 0.97]; accuracy, 0.84 [0.77, 0.89]). Model validation performance (AUC, 0.81 [0.63, 0.92]; accuracy, 0.83 [0.66, 0.93]) demonstrated the potential for generalization.</div></div><div><h3>Conclusion</h3><div>This study introduces a novel miRNA prognosis model for knee OA patients at risk of structural progression. It requires five baseline features, demonstrates excellent performance, is validated with an independent set, and holds promise for future personalized therapeutic monitoring.</div></div>","PeriodicalId":19654,"journal":{"name":"Osteoarthritis and Cartilage","volume":"33 3","pages":"Pages 330-340"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoarthritis and Cartilage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063458424014754","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Conventional methodologies are ineffective in predicting the rapid progression of knee osteoarthritis (OA). MicroRNAs (miRNAs) show promise as biomarkers for patient stratification. We aimed to develop a miRNA prognosis model for identifying knee OA structural progressors/non-progressors using integrated machine/deep learning tools.

Methods

Baseline serum miRNAs from Osteoarthritis Initiative (OAI) participants were isolated and sequenced. Participants were categorized based on their likelihood of knee structural progression/non-progression using magnetic resonance imaging and X-ray data. For prediction model development, 152 OAI participants (91 progressors, 61 non-progressors) were used. MiRNA features were reduced through VarClusHi clustering. Key miRNAs and OA determinants (age, sex, body mass index, race) were identified using seven machine learning tools. The final prediction model was developed using advanced machine/deep learning techniques. Model performance was assessed with area under the curve (AUC) (95% confidence intervals) and accuracy. Monte Carlo cross-validation ensured robustness. Model validation used 30 OAI baseline plasma samples from an independent set of participants (14 progressors, 16 non-progressors).

Results

Feature clustering selected 107 miRNAs. Elastic Net was chosen for feature selection. An optimized prediction model based on an Artificial Neural Network comprising age and four miRNAs (hsa-miR-556-3p, hsa-miR-3157-5p, hsa-miR-200a-5p, hsa-miR-141-3p) exhibited excellent performance (AUC, 0.94 [0.89, 0.97]; accuracy, 0.84 [0.77, 0.89]). Model validation performance (AUC, 0.81 [0.63, 0.92]; accuracy, 0.83 [0.66, 0.93]) demonstrated the potential for generalization.

Conclusion

This study introduces a novel miRNA prognosis model for knee OA patients at risk of structural progression. It requires five baseline features, demonstrates excellent performance, is validated with an independent set, and holds promise for future personalized therapeutic monitoring.
使用集成机器和深度学习方法早期预测膝骨关节炎结构进展的MicroRNA签名。
目的:常规方法在预测膝骨关节炎(OA)的快速进展方面是无效的。mirna有望成为患者分层的生物标志物。我们的目标是开发一个miRNA预后模型,用于使用集成的机器/深度学习工具识别膝关节OA结构进展者/非进展者。方法:分离OAI参与者的基线血清mirna并进行测序。通过MRI和x线数据,根据参与者的膝关节结构进展/不进展的可能性对其进行分类。为了开发预测模型,使用了152名OAI参与者(91名进展者,61名非进展者)。通过VarClusHi聚类减少MiRNA特征。使用七种机器学习工具确定关键mirna和OA决定因素(年龄、性别、BMI、种族)。最终的预测模型是使用先进的机器/深度学习技术开发的。用AUC(95%置信区间)和准确度评估模型性能。蒙特卡洛交叉验证确保了鲁棒性。模型验证使用来自独立参与者组的30份OAI基线血浆样本(14名进展者,16名非进展者)。结果:特征聚类筛选出107个mirna。选择Elastic Net进行特征选择。基于年龄和四种mirna (hsa-miR-556-3p、hsa-miR-3157-5p、hsa-miR-200a-5p、hsa-miR-141-3p)的人工神经网络(ANN)优化预测模型表现优异(AUC, 0.94 [0.89, 0.97];准确率为0.84[0.77,0.89])。模型验证性能(AUC, 0.81 [0.63, 0.92];准确率(0.83[0.66,0.93])表明了泛化的潜力。结论:本研究为存在结构进展风险的膝关节OA患者引入了一种新的miRNA预后模型。它需要五个基线特征,表现出优异的性能,通过独立的一组验证,并有望用于未来的个性化治疗监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Osteoarthritis and Cartilage
Osteoarthritis and Cartilage 医学-风湿病学
CiteScore
11.70
自引率
7.10%
发文量
802
审稿时长
52 days
期刊介绍: Osteoarthritis and Cartilage is the official journal of the Osteoarthritis Research Society International. It is an international, multidisciplinary journal that disseminates information for the many kinds of specialists and practitioners concerned with osteoarthritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信