Micah P Vallin, Rijan Karkee, Theresa M Kucinski, Huan Zhao, Han Htoon, Chanho Lee, Ramon M Martinez, Saryu J Fensin, Richard Z Zhang, Michael T Pettes
{"title":"SnSe<sub>2</sub>thermal conductivity from optothermal Raman and Stokes/anti-Stokes thermometry.","authors":"Micah P Vallin, Rijan Karkee, Theresa M Kucinski, Huan Zhao, Han Htoon, Chanho Lee, Ramon M Martinez, Saryu J Fensin, Richard Z Zhang, Michael T Pettes","doi":"10.1088/1361-6528/ad99df","DOIUrl":null,"url":null,"abstract":"<p><p>The optothermal Raman method is useful in determining the in-plane thermal conductivity of two-dimensional (2D) materials that are either suspended or supported on a substrate. We compare this method with the Stokes/anti-Stokes scattering thermometry method, which can play a role in both calibration of Raman peak positions as well as extraction of the local phonon temperature. This work demonstrates that the Stokes/anti-Stokes intensity ratio plays an important role in determining the in-plane thermal conductivity of 2D tin diselenide (SnSe<sub>2</sub>) dry-transferred onto a polished copper (Cu) substrate. The statistically-averaged thermal conductivity of the 108 ± 24 nm-thick SnSe<sub>2</sub>yielded 5.4 ± 3.5 Wm<sup>-1</sup>K<sup>-1</sup>for the optothermal Raman method, and 2.40 ± 0.81 Wm<sup>-1</sup>K<sup>-1</sup>for the Stokes/anti-Stokes thermometry method, indicating that the Stokes/anti-Stokes thermometry method to calculate the thermal conductivity of a material can simultaneously increase both precision and accuracy. The uncertainty value was also lowered by a factor of 1.9 from the traditional optothermal Raman method to the Stokes/anti-Stokes thermometry method. The low in-plane thermal conductivity of 2D SnSe<sub>2</sub>, 1.3-2.9 times lower than bulk, is useful for applications in thermal and electrical energy conversion and thermoelectric devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad99df","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The optothermal Raman method is useful in determining the in-plane thermal conductivity of two-dimensional (2D) materials that are either suspended or supported on a substrate. We compare this method with the Stokes/anti-Stokes scattering thermometry method, which can play a role in both calibration of Raman peak positions as well as extraction of the local phonon temperature. This work demonstrates that the Stokes/anti-Stokes intensity ratio plays an important role in determining the in-plane thermal conductivity of 2D tin diselenide (SnSe2) dry-transferred onto a polished copper (Cu) substrate. The statistically-averaged thermal conductivity of the 108 ± 24 nm-thick SnSe2yielded 5.4 ± 3.5 Wm-1K-1for the optothermal Raman method, and 2.40 ± 0.81 Wm-1K-1for the Stokes/anti-Stokes thermometry method, indicating that the Stokes/anti-Stokes thermometry method to calculate the thermal conductivity of a material can simultaneously increase both precision and accuracy. The uncertainty value was also lowered by a factor of 1.9 from the traditional optothermal Raman method to the Stokes/anti-Stokes thermometry method. The low in-plane thermal conductivity of 2D SnSe2, 1.3-2.9 times lower than bulk, is useful for applications in thermal and electrical energy conversion and thermoelectric devices.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.