Mariangela Scalise, Eleonora Cianflone, Claudia Quercia, Loredana Pagano, Antonio Chiefalo, Antonio Stincelli, Annalaura Torella, Barbara Puccio, Gianluca Santamaria, Hiram P Guzzi, Pierangelo Veltri, Antonella De Angelis, Konrad Urbanek, Georgina M Ellison-Hughes, Daniele Torella, Fabiola Marino
{"title":"Senolytics rejuvenate aging cardiomyopathy in human cardiac organoids.","authors":"Mariangela Scalise, Eleonora Cianflone, Claudia Quercia, Loredana Pagano, Antonio Chiefalo, Antonio Stincelli, Annalaura Torella, Barbara Puccio, Gianluca Santamaria, Hiram P Guzzi, Pierangelo Veltri, Antonella De Angelis, Konrad Urbanek, Georgina M Ellison-Hughes, Daniele Torella, Fabiola Marino","doi":"10.1016/j.mad.2024.112007","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human cardiac organoids closely replicate the architecture and function of the human heart, offering a potential accurate platform for studying cellular and molecular features of aging cardiomyopathy. Senolytics have shown potential in addressing age-related pathologies but their potential to reverse aging-related human cardiomyopathy remains largely unexplored.</p><p><strong>Methods: </strong>We employed human iPSC-derived cardiac organoids (hCOs/hCardioids) to model doxorubicin(DOXO)-induced cardiomyopathy in an aged context. hCardioids were treated with DOXO and subsequently with a combination of two senolytics: dasatinib (D) and quercetin (Q).</p><p><strong>Results: </strong>DOXO-treated hCardioids exhibited significantly increased oxidative stress, DNA damage (pH2AX), cellular senescence (p16<sup>INK4A</sup>) and decreased cell proliferation associated with a senescence-associated secretory phenotype (SASP). DOXO-treated hCardioids were considerably deprived of cardiac progenitors and displayed reduced cardiomyocyte proliferation as well as contractility. These distinctive aging-associated characteristics were confirmed by global RNA-sequencing analysis. Treatment with D+Q reversed these effects, reducing oxidative stress and senescence markers, alleviating SASP, and restoring hCardioids viability and function. Additionally, senolytics replenished cardiac progenitors and reversed the cardiomyocyte proliferation deficit.</p><p><strong>Conclusions: </strong>Doxorubicin triggers an age-associated phenotype in hCardioids reliably modelling the main cellular and molecular features of aging cardiomyopathy. Senescence is a key mechanism of the aged-hCOs phenotype as senolytics rejuvenated aged-hCardioids restoring their structure and function while reverting the age-associated regenerative deficit.</p>","PeriodicalId":18340,"journal":{"name":"Mechanisms of Ageing and Development","volume":" ","pages":"112007"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Ageing and Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mad.2024.112007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Human cardiac organoids closely replicate the architecture and function of the human heart, offering a potential accurate platform for studying cellular and molecular features of aging cardiomyopathy. Senolytics have shown potential in addressing age-related pathologies but their potential to reverse aging-related human cardiomyopathy remains largely unexplored.
Methods: We employed human iPSC-derived cardiac organoids (hCOs/hCardioids) to model doxorubicin(DOXO)-induced cardiomyopathy in an aged context. hCardioids were treated with DOXO and subsequently with a combination of two senolytics: dasatinib (D) and quercetin (Q).
Results: DOXO-treated hCardioids exhibited significantly increased oxidative stress, DNA damage (pH2AX), cellular senescence (p16INK4A) and decreased cell proliferation associated with a senescence-associated secretory phenotype (SASP). DOXO-treated hCardioids were considerably deprived of cardiac progenitors and displayed reduced cardiomyocyte proliferation as well as contractility. These distinctive aging-associated characteristics were confirmed by global RNA-sequencing analysis. Treatment with D+Q reversed these effects, reducing oxidative stress and senescence markers, alleviating SASP, and restoring hCardioids viability and function. Additionally, senolytics replenished cardiac progenitors and reversed the cardiomyocyte proliferation deficit.
Conclusions: Doxorubicin triggers an age-associated phenotype in hCardioids reliably modelling the main cellular and molecular features of aging cardiomyopathy. Senescence is a key mechanism of the aged-hCOs phenotype as senolytics rejuvenated aged-hCardioids restoring their structure and function while reverting the age-associated regenerative deficit.
期刊介绍:
Mechanisms of Ageing and Development is a multidisciplinary journal aimed at revealing the molecular, biochemical and biological mechanisms that underlie the processes of aging and development in various species as well as of age-associated diseases. Emphasis is placed on investigations that delineate the contribution of macromolecular damage and cytotoxicity, genetic programs, epigenetics and genetic instability, mitochondrial function, alterations of metabolism and innovative anti-aging approaches. For all of the mentioned studies it is necessary to address the underlying mechanisms.
Mechanisms of Ageing and Development publishes original research, review and mini-review articles. The journal also publishes Special Issues that focus on emerging research areas. Special issues may include all types of articles following peered review. Proposals should be sent directly to the Editor-in-Chief.