Sex and Common Germline Variants Affect the Toxicity Profile and Pharmacokinetics of Alectinib: A Nationwide Cohort Study in Patients With ALK-Positive NSCLC.
Niels Heersche, Daan A C Lanser, M Benthe Muntinghe-Wagenaar, Ma Ida Mohmaed Ali, Ezgi B Ulas, Tessa M A Trooster, Evert de Jonge, Esther Oomen-de Hoop, Marthe S Paats, Idris Bahce, Sander Croes, Lizza E L Hendriks, Anthonie J van der Wekken, Anne-Marie C Dingemans, Alwin D R Huitema, Ron H N van Schaik, Ron H J Mathijssen, G D Marijn Veerman
{"title":"Sex and Common Germline Variants Affect the Toxicity Profile and Pharmacokinetics of Alectinib: A Nationwide Cohort Study in Patients With ALK-Positive NSCLC.","authors":"Niels Heersche, Daan A C Lanser, M Benthe Muntinghe-Wagenaar, Ma Ida Mohmaed Ali, Ezgi B Ulas, Tessa M A Trooster, Evert de Jonge, Esther Oomen-de Hoop, Marthe S Paats, Idris Bahce, Sander Croes, Lizza E L Hendriks, Anthonie J van der Wekken, Anne-Marie C Dingemans, Alwin D R Huitema, Ron H N van Schaik, Ron H J Mathijssen, G D Marijn Veerman","doi":"10.1016/j.jtho.2024.11.025","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Alectinib, a small-molecule kinase inhibitor, is used as first-line treatment for ALK-positive (ALK+) NSCLC. Albeit generally well-tolerated, a considerable subset of patients requires dose adjustments due to drug-related toxicity. Single-nucleotide polymorphisms in genes related to the metabolism of alectinib may upfront identify patients at risk for toxicity.</p><p><strong>Methods: </strong>In this multicenter observational cohort study in patients with advanced ALK+ NSCLC receiving alectinib treatment, we investigated the association between toxicity, pharmacokinetics, and key genetic variants in ABCB1, CYP3A4, PPAR-α, POR, and CYP3A5. Data on demographics, adverse events, and alectinib trough levels were collected from five hospitals.</p><p><strong>Results: </strong>Among 215 patients, 47% experienced severe toxicity. Women experienced more severe toxicity (female versus male: 56% versus 34%; p = 0.001) and had +35% higher alectinib trough levels (p < 0.001). Homozygous carriers of the PPAR-α 209G>A variant exhibited a higher incidence of grade greater than or equal to 3 toxicity (38%) compared with patients who carried at least one wild-type allele (11%) (p = 0.004). This remained significant after Bonferroni correction. Patients who experienced severe toxicity had +18.5% (95% confidence interval: 2.9%-36.6%; p = 0.019) higher trough levels.</p><p><strong>Conclusions: </strong>Female patients encounter more severe toxicity due to higher alectinib exposure, which warrants further exploration. PPAR-α 209G>A significantly increased relevant alectinib-induced toxicity, most likely due to an increase in alectinib exposure. Pretreatment testing for genetic variants with a subsequent dose reduction could provide a viable approach to reduce alectinib-related toxicity.</p>","PeriodicalId":17515,"journal":{"name":"Journal of Thoracic Oncology","volume":" ","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jtho.2024.11.025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Alectinib, a small-molecule kinase inhibitor, is used as first-line treatment for ALK-positive (ALK+) NSCLC. Albeit generally well-tolerated, a considerable subset of patients requires dose adjustments due to drug-related toxicity. Single-nucleotide polymorphisms in genes related to the metabolism of alectinib may upfront identify patients at risk for toxicity.
Methods: In this multicenter observational cohort study in patients with advanced ALK+ NSCLC receiving alectinib treatment, we investigated the association between toxicity, pharmacokinetics, and key genetic variants in ABCB1, CYP3A4, PPAR-α, POR, and CYP3A5. Data on demographics, adverse events, and alectinib trough levels were collected from five hospitals.
Results: Among 215 patients, 47% experienced severe toxicity. Women experienced more severe toxicity (female versus male: 56% versus 34%; p = 0.001) and had +35% higher alectinib trough levels (p < 0.001). Homozygous carriers of the PPAR-α 209G>A variant exhibited a higher incidence of grade greater than or equal to 3 toxicity (38%) compared with patients who carried at least one wild-type allele (11%) (p = 0.004). This remained significant after Bonferroni correction. Patients who experienced severe toxicity had +18.5% (95% confidence interval: 2.9%-36.6%; p = 0.019) higher trough levels.
Conclusions: Female patients encounter more severe toxicity due to higher alectinib exposure, which warrants further exploration. PPAR-α 209G>A significantly increased relevant alectinib-induced toxicity, most likely due to an increase in alectinib exposure. Pretreatment testing for genetic variants with a subsequent dose reduction could provide a viable approach to reduce alectinib-related toxicity.
期刊介绍:
Journal of Thoracic Oncology (JTO), the official journal of the International Association for the Study of Lung Cancer,is the primary educational and informational publication for topics relevant to the prevention, detection, diagnosis, and treatment of all thoracic malignancies.The readship includes epidemiologists, medical oncologists, radiation oncologists, thoracic surgeons, pulmonologists, radiologists, pathologists, nuclear medicine physicians, and research scientists with a special interest in thoracic oncology.