Maria A Cruz, Scott Gronowicz, Makan Karimzadeh, Kari Martyniak, Ramapaada Medam, Thomas J Kean
{"title":"Disease modifying osteoarthritis drug discovery using a temporal phenotypic reporter in 3D aggregates of primary human chondrocytes.","authors":"Maria A Cruz, Scott Gronowicz, Makan Karimzadeh, Kari Martyniak, Ramapaada Medam, Thomas J Kean","doi":"10.1002/jor.26021","DOIUrl":null,"url":null,"abstract":"<p><p>Our aim was to develop a novel approach to identify disease-modifying drugs for osteoarthritis (OA), focusing on stimulating type II collagen anabolism in chondrocytes. As ELISA or western blot are destructive, laborious and time consuming, primary human chondrocytes expressing Gaussia luciferase under the control of the type II collagen promoter were developed and used. We cultured them in 3D cartilage aggregates under physioxia, to temporally screen a natural product library over 3-weeks. Hit compounds were analyzed for their potential targets in silico, first by structure, then by RNA-Seq. Two hit compounds were then further analyzed using biochemical assays, dose-response curves, and histological analyses to confirm their effects on type II collagen expression and chondrogenesis. Aromoline shows promise as a potential disease modifying compound, demonstrating an increase in type II collagen expression within cartilage sourced from chondrocytes of three distinct donors. Aromoline is a bisbenzylisoquinoline alkaloid that has been studied for its antiproliferative, anti-inflammatory, and antimicrobial properties, and we are the first to explore its effects on chondrocytes and chondrogenesis. In silico analysis revealed the dopamine receptor D4 (DRD4) as a potential target, confirmed by type II collagen upregulation after aromoline treatment and with DRD4-specific agonist ABT-724. This novel approach combining in silico and in vitro methods provides a platform for drug discovery in a challenging and under-researched area. In conclusion, a novel drug (aromoline) and target receptor (DRD4) were identified as stimulating type II collagen, with the future goal of treating or preventing OA.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jor.26021","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Our aim was to develop a novel approach to identify disease-modifying drugs for osteoarthritis (OA), focusing on stimulating type II collagen anabolism in chondrocytes. As ELISA or western blot are destructive, laborious and time consuming, primary human chondrocytes expressing Gaussia luciferase under the control of the type II collagen promoter were developed and used. We cultured them in 3D cartilage aggregates under physioxia, to temporally screen a natural product library over 3-weeks. Hit compounds were analyzed for their potential targets in silico, first by structure, then by RNA-Seq. Two hit compounds were then further analyzed using biochemical assays, dose-response curves, and histological analyses to confirm their effects on type II collagen expression and chondrogenesis. Aromoline shows promise as a potential disease modifying compound, demonstrating an increase in type II collagen expression within cartilage sourced from chondrocytes of three distinct donors. Aromoline is a bisbenzylisoquinoline alkaloid that has been studied for its antiproliferative, anti-inflammatory, and antimicrobial properties, and we are the first to explore its effects on chondrocytes and chondrogenesis. In silico analysis revealed the dopamine receptor D4 (DRD4) as a potential target, confirmed by type II collagen upregulation after aromoline treatment and with DRD4-specific agonist ABT-724. This novel approach combining in silico and in vitro methods provides a platform for drug discovery in a challenging and under-researched area. In conclusion, a novel drug (aromoline) and target receptor (DRD4) were identified as stimulating type II collagen, with the future goal of treating or preventing OA.
期刊介绍:
The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.