{"title":"Mechanisms of tendon-bone interface healing: biomechanics, cell mechanics, and tissue engineering approaches.","authors":"Zhixiong Xu, Wensheng Xu, Tao Zhang, Long Luo","doi":"10.1186/s13018-024-05304-8","DOIUrl":null,"url":null,"abstract":"<p><p>The healing of tendon-bone contact surfaces involves complex biomechanical and biochemical interactions, with pivotal implications for sports medicine and rehabilitation. This review explores applications from cellular mechanics to tissue engineering, emphasizing how biomechanics impact tendon-bone healing. Cells regulate behavior, including growth, differentiation, and migration, by sensing mechanical signals and translating them into biochemical responses, which are critical in the healing process. Cellular mechanics modulate intracellular signaling, thereby influencing biological function and healing capacity. Optimizing tendon-bone interface repair involves modulating the extracellular mechanical environment. This includes physical stimulation, such as stretching, pressure, or vibration, to promote cellular alignment and enhance tissue structural integrity. Tissue engineering in tendon-bone healing focuses on designing scaffolds that mimic the biomechanical properties of the natural tendon-bone interface. Synthesizing these studies provides an in-depth understanding and utilization of biomechanical principles, significantly improving tendon-bone healing and offering new directions for clinical treatments to achieve better therapeutic outcomes and rehabilitation for patients with sports injuries.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"19 1","pages":"817"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-024-05304-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
The healing of tendon-bone contact surfaces involves complex biomechanical and biochemical interactions, with pivotal implications for sports medicine and rehabilitation. This review explores applications from cellular mechanics to tissue engineering, emphasizing how biomechanics impact tendon-bone healing. Cells regulate behavior, including growth, differentiation, and migration, by sensing mechanical signals and translating them into biochemical responses, which are critical in the healing process. Cellular mechanics modulate intracellular signaling, thereby influencing biological function and healing capacity. Optimizing tendon-bone interface repair involves modulating the extracellular mechanical environment. This includes physical stimulation, such as stretching, pressure, or vibration, to promote cellular alignment and enhance tissue structural integrity. Tissue engineering in tendon-bone healing focuses on designing scaffolds that mimic the biomechanical properties of the natural tendon-bone interface. Synthesizing these studies provides an in-depth understanding and utilization of biomechanical principles, significantly improving tendon-bone healing and offering new directions for clinical treatments to achieve better therapeutic outcomes and rehabilitation for patients with sports injuries.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.