{"title":"Effect of collagen-based scaffolds with hydroxyapatite on the repair of cartilage defects in the rabbit knee joint.","authors":"Xiaoliang He, Qiuping Han, Yuxin Zhang, Huan Zhang, Jun Liu, Xiaohui Zhou","doi":"10.1186/s13018-024-05323-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The repair of articular cartilage defects is always a significant clinical challenge in joint treatment. Therefore, the aim of this study was to investigate that the ColII-HA-CS-HAP scaffolds with BMSCs could repair cartilage defects of knee.</p><p><strong>Methods: </strong>Bone marrow mesenchymal stem cells (BMSCs) were extracted from rabbits, identified using immunofluorescence staining, and successfully induced into chondrocytes. Type II collagen (ColII) was isolated from bovine cartilage and constructed into scaffolds with hyaluronic acid, chondroitin sulfate, and hydroxyapatite. Then BMSCs were seeded on the ColII-HA-CS-HAP scaffold to detect biocompatibility.</p><p><strong>Results: </strong>The results of DAPI fluorescence staining showed that the number of BMSCs on the ColII-HA-CS-HAP scaffolds increased rapidly after culturing for 12 d. The rabbit knee cartilage defect model with a diameter of approximately 3 mm and a thickness of approximately 4 mm was selected to evaluate the regenerative potential of the scaffolds using histological and immunohistochemical analyses. At 6 months, the regenerated cartilage in the ColII-HA-CS-HAP scaffolds with BMSCs was more similar to that of native cartilage than the ColII-HA-CS-HAP scaffold group.</p><p><strong>Conclusions: </strong>Our study proved that the ColII-HA-CS-HAP scaffolds with differentiated BMSCs can produce an excellent healing response and repair cartilage defects successfully in a rabbit model.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"19 1","pages":"818"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-024-05323-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The repair of articular cartilage defects is always a significant clinical challenge in joint treatment. Therefore, the aim of this study was to investigate that the ColII-HA-CS-HAP scaffolds with BMSCs could repair cartilage defects of knee.
Methods: Bone marrow mesenchymal stem cells (BMSCs) were extracted from rabbits, identified using immunofluorescence staining, and successfully induced into chondrocytes. Type II collagen (ColII) was isolated from bovine cartilage and constructed into scaffolds with hyaluronic acid, chondroitin sulfate, and hydroxyapatite. Then BMSCs were seeded on the ColII-HA-CS-HAP scaffold to detect biocompatibility.
Results: The results of DAPI fluorescence staining showed that the number of BMSCs on the ColII-HA-CS-HAP scaffolds increased rapidly after culturing for 12 d. The rabbit knee cartilage defect model with a diameter of approximately 3 mm and a thickness of approximately 4 mm was selected to evaluate the regenerative potential of the scaffolds using histological and immunohistochemical analyses. At 6 months, the regenerated cartilage in the ColII-HA-CS-HAP scaffolds with BMSCs was more similar to that of native cartilage than the ColII-HA-CS-HAP scaffold group.
Conclusions: Our study proved that the ColII-HA-CS-HAP scaffolds with differentiated BMSCs can produce an excellent healing response and repair cartilage defects successfully in a rabbit model.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.