A supervised machine learning tool to predict the bactericidal efficiency of nanostructured surface.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yaxi Chen, Hongyi Chen, Anthony Harker, Yuanchang Liu, Jie Huang
{"title":"A supervised machine learning tool to predict the bactericidal efficiency of nanostructured surface.","authors":"Yaxi Chen, Hongyi Chen, Anthony Harker, Yuanchang Liu, Jie Huang","doi":"10.1186/s12951-024-02974-8","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence and rapid spread of multidrug-resistant bacterial strains is a growing concern of public health. Inspired by the natural bactericidal surfaces of lotus leaves and shark skin, increasing attention has been focused on the use of mechano-bactericidal methods to create surfaces with antibacterial and/or bactericidal effects. There have been several studies exploring the bactericidal effect of nanostructured surfaces under various combinations of parameters. However, the correlation and synergies between these factors still need to be clarified. Recently machine learning (ML), which enables prediction or decision-making based on data, has been used in the field of biomaterials with promising results. In this study, we explored ML in nanotechnology to investigate the antimicrobial potential of nanostructured surfaces. A dataset of nanostructured surfaces and their antimicrobial properties was built by extracting the published literature. Based on the literature review and the distribution of our dataset, 70% bactericidal efficiency was selected as a practical benchmark for our classification model that balances stringent bactericidal performance with achievable targets in diverse conditions. Subsequently, we developed an ML classification model, which demonstrated an 81% accuracy in its predictive capability. A regression model was further developed to predict the value of bactericidal efficiency for nanostructured surfaces. Feature importance analysis of the ML models suggested that nanotopographical features have a greater influence on bactericidal properties than material properties, thus providing insight into the principles of the mechano-bactericidal effect of nanostructured surfaces. Overall, this ML model tool could help researchers to effectively select and design the parameters of the surface structure prior to experimentation, thereby improving the timeliness and reducing the number of experiments and the associated costs.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"748"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02974-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence and rapid spread of multidrug-resistant bacterial strains is a growing concern of public health. Inspired by the natural bactericidal surfaces of lotus leaves and shark skin, increasing attention has been focused on the use of mechano-bactericidal methods to create surfaces with antibacterial and/or bactericidal effects. There have been several studies exploring the bactericidal effect of nanostructured surfaces under various combinations of parameters. However, the correlation and synergies between these factors still need to be clarified. Recently machine learning (ML), which enables prediction or decision-making based on data, has been used in the field of biomaterials with promising results. In this study, we explored ML in nanotechnology to investigate the antimicrobial potential of nanostructured surfaces. A dataset of nanostructured surfaces and their antimicrobial properties was built by extracting the published literature. Based on the literature review and the distribution of our dataset, 70% bactericidal efficiency was selected as a practical benchmark for our classification model that balances stringent bactericidal performance with achievable targets in diverse conditions. Subsequently, we developed an ML classification model, which demonstrated an 81% accuracy in its predictive capability. A regression model was further developed to predict the value of bactericidal efficiency for nanostructured surfaces. Feature importance analysis of the ML models suggested that nanotopographical features have a greater influence on bactericidal properties than material properties, thus providing insight into the principles of the mechano-bactericidal effect of nanostructured surfaces. Overall, this ML model tool could help researchers to effectively select and design the parameters of the surface structure prior to experimentation, thereby improving the timeliness and reducing the number of experiments and the associated costs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信