Pore-forming toxin-like proteins in the anti-parasitoid immune response of Drosophila.

IF 4.7 3区 医学 Q2 IMMUNOLOGY
Lilla B Magyar, Edit Ábrahám, Zoltán Lipinszki, Rebecca L Tarnopol, Noah K Whiteman, Viktória Varga, Dan Hultmark, István Andó, Gyöngyi Cinege
{"title":"Pore-forming toxin-like proteins in the anti-parasitoid immune response of Drosophila.","authors":"Lilla B Magyar, Edit Ábrahám, Zoltán Lipinszki, Rebecca L Tarnopol, Noah K Whiteman, Viktória Varga, Dan Hultmark, István Andó, Gyöngyi Cinege","doi":"10.1159/000542583","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Species of the ananassae subgroup of Drosophilidae are highly resistant to parasitoid wasp infections. We have previously shown that the genes encoding Cytolethal Distending Toxin B (CdtB) and the Apoptosis Inducing Protein of 56 kDa (AIP56) were horizontally transferred to these fly species from prokaryotes and are now instrumental in the anti-parasitoid immune defense of Drosophila ananassae. Here we describe a new family of genes, which encode proteins with Hemolysin E domains, heretofore only identified in prokaryotes. Hemolysin E proteins are pore-forming toxins, important virulence factors of bacteria.</p><p><strong>Methods: </strong>Bioinformatical, transcriptional and protein expressional studies were used.</p><p><strong>Results: </strong>The hemolysin E-like genes have a scattered distribution among the genomes of species belonging to several different monophyletic lineages in the family Drosophilidae. We detected structural homology with the bacterial Hemolysin E toxins and showed that the origin of the D. ananassae hemolysin E-like genes (hl1-38) is consistent with prokaryotic horizontal gene transfer. These genes encode humoral factors, secreted into the hemolymph by the fat body and hemocytes. Their expression is induced solely by parasitoid infection and the proteins bind to the developing parasitoids.</p><p><strong>Conclusions: </strong>Hemolysin E-like proteins acquired by horizontal gene transfer and expressed by the primary immune organs may contribute to the elimination of parasitoids, as novel humoral factors in Drosophila innate immunity.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":" ","pages":"1-24"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innate Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542583","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Species of the ananassae subgroup of Drosophilidae are highly resistant to parasitoid wasp infections. We have previously shown that the genes encoding Cytolethal Distending Toxin B (CdtB) and the Apoptosis Inducing Protein of 56 kDa (AIP56) were horizontally transferred to these fly species from prokaryotes and are now instrumental in the anti-parasitoid immune defense of Drosophila ananassae. Here we describe a new family of genes, which encode proteins with Hemolysin E domains, heretofore only identified in prokaryotes. Hemolysin E proteins are pore-forming toxins, important virulence factors of bacteria.

Methods: Bioinformatical, transcriptional and protein expressional studies were used.

Results: The hemolysin E-like genes have a scattered distribution among the genomes of species belonging to several different monophyletic lineages in the family Drosophilidae. We detected structural homology with the bacterial Hemolysin E toxins and showed that the origin of the D. ananassae hemolysin E-like genes (hl1-38) is consistent with prokaryotic horizontal gene transfer. These genes encode humoral factors, secreted into the hemolymph by the fat body and hemocytes. Their expression is induced solely by parasitoid infection and the proteins bind to the developing parasitoids.

Conclusions: Hemolysin E-like proteins acquired by horizontal gene transfer and expressed by the primary immune organs may contribute to the elimination of parasitoids, as novel humoral factors in Drosophila innate immunity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Innate Immunity
Journal of Innate Immunity 医学-免疫学
CiteScore
10.50
自引率
1.90%
发文量
35
审稿时长
7.5 months
期刊介绍: The ''Journal of Innate Immunity'' is a bimonthly journal covering all aspects within the area of innate immunity, including evolution of the immune system, molecular biology of cells involved in innate immunity, pattern recognition and signals of ‘danger’, microbial corruption, host response and inflammation, mucosal immunity, complement and coagulation, sepsis and septic shock, molecular genomics, and development of immunotherapies. The journal publishes original research articles, short communications, reviews, commentaries and letters to the editors. In addition to regular papers, some issues feature a special section with a thematic focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信