Digital instrument simulator to optimize the development of hyperspectral systems: application for intraoperative functional brain mapping.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-02-01 Epub Date: 2024-12-02 DOI:10.1117/1.JBO.30.2.023513
Charly Caredda, Frédéric Lange, Luca Giannoni, Ivan Ezhov, Thiébaud Picart, Jacques Guyotat, Ilias Tachtsidis, Bruno Montcel
{"title":"Digital instrument simulator to optimize the development of hyperspectral systems: application for intraoperative functional brain mapping.","authors":"Charly Caredda, Frédéric Lange, Luca Giannoni, Ivan Ezhov, Thiébaud Picart, Jacques Guyotat, Ilias Tachtsidis, Bruno Montcel","doi":"10.1117/1.JBO.30.2.023513","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. These areas can be assessed by monitoring cerebral hemodynamics and metabolism. Robust quantification of these biomarkers is complicated to perform during neurosurgery due to the critical context of the operating room. In actual devices, the inhomogeneities of the optical properties of the exposed brain cortex are poorly taken into consideration, which introduce quantification errors of biomarkers of brain functionality. Moreover, the best choice of spectral configuration is still based on an empirical approach.</p><p><strong>Aim: </strong>We propose a digital instrument simulator to optimize the development of hyperspectral systems for intraoperative brain mapping studies. This simulator can provide realistic modeling of the cerebral cortex and the identification of the optimal wavelengths to monitor cerebral hemodynamics (oxygenated <math> <mrow><msub><mi>HbO</mi> <mn>2</mn></msub> </mrow> </math> and deoxygenated hemoglobin Hb) and metabolism (oxidized state of cytochromes <math><mrow><mi>b</mi></mrow> </math> and <math><mrow><mi>c</mi></mrow> </math> and cytochrome-c-oxidase oxCytb, oxCytc, and oxCCO).</p><p><strong>Approach: </strong>The digital instrument simulator is computed with white Monte Carlo simulations of a volume created from a real image of exposed cortex. We developed an optimization procedure based on a genetic algorithm to identify the best wavelength combinations in the visible and near-infrared range to quantify concentration changes in <math> <mrow><msub><mi>HbO</mi> <mn>2</mn></msub> </mrow> </math> , Hb, oxCCO, and the oxidized state of cytochrome <math><mrow><mi>b</mi></mrow> </math> and <math><mrow><mi>c</mi></mrow> </math> (oxCytb and oxCytc).</p><p><strong>Results: </strong>The digital instrument allows the modeling of intensity maps collected by a camera sensor as well as images of path length to take into account the inhomogeneities of the optical properties. The optimization procedure helps to identify the best wavelength combination of 18 wavelengths that reduces the quantification errors in <math> <mrow><msub><mi>HbO</mi> <mn>2</mn></msub> </mrow> </math> , Hb, and oxCCO by 47%, 57%, and 57%, respectively, compared with the gold standard of 121 wavelengths between 780 and 900 nm. The optimization procedure does not help to resolve changes in cytochrome <math><mrow><mi>b</mi></mrow> </math> and <math><mrow><mi>c</mi></mrow> </math> in a significant way but helps to better resolve oxCCO changes.</p><p><strong>Conclusions: </strong>We proposed a digital instrument simulator to optimize the development of hyperspectral systems for intraoperative brain mapping studies. This digital instrument simulator and this optimization framework could be used to optimize the design of hyperspectral imaging devices.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 2","pages":"023513"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.2.023513","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. These areas can be assessed by monitoring cerebral hemodynamics and metabolism. Robust quantification of these biomarkers is complicated to perform during neurosurgery due to the critical context of the operating room. In actual devices, the inhomogeneities of the optical properties of the exposed brain cortex are poorly taken into consideration, which introduce quantification errors of biomarkers of brain functionality. Moreover, the best choice of spectral configuration is still based on an empirical approach.

Aim: We propose a digital instrument simulator to optimize the development of hyperspectral systems for intraoperative brain mapping studies. This simulator can provide realistic modeling of the cerebral cortex and the identification of the optimal wavelengths to monitor cerebral hemodynamics (oxygenated HbO 2 and deoxygenated hemoglobin Hb) and metabolism (oxidized state of cytochromes b and c and cytochrome-c-oxidase oxCytb, oxCytc, and oxCCO).

Approach: The digital instrument simulator is computed with white Monte Carlo simulations of a volume created from a real image of exposed cortex. We developed an optimization procedure based on a genetic algorithm to identify the best wavelength combinations in the visible and near-infrared range to quantify concentration changes in HbO 2 , Hb, oxCCO, and the oxidized state of cytochrome b and c (oxCytb and oxCytc).

Results: The digital instrument allows the modeling of intensity maps collected by a camera sensor as well as images of path length to take into account the inhomogeneities of the optical properties. The optimization procedure helps to identify the best wavelength combination of 18 wavelengths that reduces the quantification errors in HbO 2 , Hb, and oxCCO by 47%, 57%, and 57%, respectively, compared with the gold standard of 121 wavelengths between 780 and 900 nm. The optimization procedure does not help to resolve changes in cytochrome b and c in a significant way but helps to better resolve oxCCO changes.

Conclusions: We proposed a digital instrument simulator to optimize the development of hyperspectral systems for intraoperative brain mapping studies. This digital instrument simulator and this optimization framework could be used to optimize the design of hyperspectral imaging devices.

优化高光谱系统开发的数字仪器模拟器:术中脑功能测绘的应用。
意义:术中光学成像是一种在神经外科手术中对人脑皮层功能区域进行定位的技术。这些区域可以通过监测脑血流动力学和代谢来评估。在神经外科手术中,由于手术室的关键环境,这些生物标志物的可靠量化是复杂的。在实际设备中,暴露的大脑皮层光学特性的不均匀性没有得到很好的考虑,这导致了脑功能生物标志物的量化误差。此外,光谱结构的最佳选择仍然基于经验方法。目的:我们提出了一种数字仪器模拟器,以优化高光谱系统的开发,用于术中脑成像研究。该模拟器可以提供真实的大脑皮层模型,并确定最佳波长,以监测脑血流动力学(含氧HbO 2和脱氧血红蛋白Hb)和代谢(细胞色素b和c的氧化状态以及细胞色素c氧化酶oxCytb, oxCytc和oxCCO)。方法:数字仪器模拟器是用白色蒙特卡罗模拟从暴露的皮层的真实图像创建的体积计算。我们开发了一种基于遗传算法的优化程序,以确定可见光和近红外范围内的最佳波长组合,以量化HbO 2, Hb, oxCCO的浓度变化以及细胞色素b和c (oxCytb和oxCytc)的氧化状态。结果:该数字仪器允许对相机传感器收集的强度图以及路径长度图像进行建模,以考虑光学特性的不均匀性。优选出18个波长的最佳波长组合,与780 ~ 900 nm之间的121个波长的金标准相比,可将HbO 2、Hb和oxCCO的定量误差分别降低47%、57%和57%。优化过程不能显著地解决细胞色素b和c的变化,但有助于更好地解决oxCCO的变化。结论:我们提出了一种数字仪器模拟器,以优化高光谱系统的开发,用于术中脑成像研究。该数字仪器模拟器和优化框架可用于高光谱成像器件的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信