Understanding metabolic responses to forearm arterial occlusion measured with two-channel broadband near-infrared spectroscopy.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-11-01 Epub Date: 2024-11-29 DOI:10.1117/1.JBO.29.11.117001
Fiza Saeed, Caroline Carter, John Kolade, Robert Matthew Brothers, Hanli Liu
{"title":"Understanding metabolic responses to forearm arterial occlusion measured with two-channel broadband near-infrared spectroscopy.","authors":"Fiza Saeed, Caroline Carter, John Kolade, Robert Matthew Brothers, Hanli Liu","doi":"10.1117/1.JBO.29.11.117001","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Broadband near-infrared spectroscopy (bbNIRS) is useful for the quantification of cerebral metabolism. However, its usefulness has not been explored for broad biomedical applications.</p><p><strong>Aim: </strong>We aimed to quantify the dynamic responses of oxidized cytochrome c oxidase ( <math><mrow><mi>Δ</mi> <mo>[</mo> <mi>oxCCO</mi> <mo>]</mo></mrow> </math> ) within the mitochondria to arterial occlusion and the dynamic correlations between hemodynamic ( <math><mrow><mi>Δ</mi> <mo>[</mo> <mi>HbO</mi> <mo>]</mo></mrow> </math> ) and <math><mrow><mi>Δ</mi> <mo>[</mo> <mi>oxCCO</mi> <mo>]</mo></mrow> </math> responses during and after occlusion in forearm tissues.</p><p><strong>Approach: </strong>We recruited 14 healthy participants with two-channel bbNIRS measurements in response to a 5-min forearm arterial occlusion. The bbNIRS system consisted of one shared white-light source and two spectrometers. The modified Beer-Lambert law was applied to determine the occlusion-induced changes in <math><mrow><mi>Δ</mi> <mo>[</mo> <mi>oxCCO</mi> <mo>]</mo></mrow> </math> and <math><mrow><mi>Δ</mi> <mo>[</mo> <mi>HbO</mi> <mo>]</mo></mrow> </math> in the shallow- and deep-tissue layers.</p><p><strong>Results: </strong>During the 5-min occlusion, dynamic responses in hemodynamics exhibited the expected changes, but <math><mrow><mi>Δ</mi> <mo>[</mo> <mi>oxCCO</mi> <mo>]</mo></mrow> </math> remained constant, as observed in the 1- and 3-cm channels. A linear correlation between <math><mrow><mi>Δ</mi> <mo>[</mo> <mi>HbO</mi> <mo>]</mo></mrow> </math> and <math><mrow><mi>Δ</mi> <mo>[</mo> <mi>oxCCO</mi> <mo>]</mo></mrow> </math> was observed only during the recovery phase, with a stronger correlation in deeper tissues. The observation of a constant <math><mrow><mi>Δ</mi> <mo>[</mo> <mi>oxCCO</mi> <mo>]</mo></mrow> </math> during the cuff period was consistent with two previous reports. The interpretation of this observation is based on the literature that the oxygen metabolism of the skeletal muscle during arterial occlusion remains unchanged before all oxy-hemoglobin (and oxy-myoglobin) resources are completely depleted. Because a 5-min arterial occlusion is not adequate to exhaust all oxygen supply in the vascular bed of the forearm, the local oxygen supply to the muscle mitochondria maintains redox metabolism uninterrupted by occlusion.</p><p><strong>Conclusions: </strong>We provide a better understanding of the mitochondrial responses to forearm arterial occlusion and demonstrate the usefulness of bbNIRS.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 11","pages":"117001"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.11.117001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Broadband near-infrared spectroscopy (bbNIRS) is useful for the quantification of cerebral metabolism. However, its usefulness has not been explored for broad biomedical applications.

Aim: We aimed to quantify the dynamic responses of oxidized cytochrome c oxidase ( Δ [ oxCCO ] ) within the mitochondria to arterial occlusion and the dynamic correlations between hemodynamic ( Δ [ HbO ] ) and Δ [ oxCCO ] responses during and after occlusion in forearm tissues.

Approach: We recruited 14 healthy participants with two-channel bbNIRS measurements in response to a 5-min forearm arterial occlusion. The bbNIRS system consisted of one shared white-light source and two spectrometers. The modified Beer-Lambert law was applied to determine the occlusion-induced changes in Δ [ oxCCO ] and Δ [ HbO ] in the shallow- and deep-tissue layers.

Results: During the 5-min occlusion, dynamic responses in hemodynamics exhibited the expected changes, but Δ [ oxCCO ] remained constant, as observed in the 1- and 3-cm channels. A linear correlation between Δ [ HbO ] and Δ [ oxCCO ] was observed only during the recovery phase, with a stronger correlation in deeper tissues. The observation of a constant Δ [ oxCCO ] during the cuff period was consistent with two previous reports. The interpretation of this observation is based on the literature that the oxygen metabolism of the skeletal muscle during arterial occlusion remains unchanged before all oxy-hemoglobin (and oxy-myoglobin) resources are completely depleted. Because a 5-min arterial occlusion is not adequate to exhaust all oxygen supply in the vascular bed of the forearm, the local oxygen supply to the muscle mitochondria maintains redox metabolism uninterrupted by occlusion.

Conclusions: We provide a better understanding of the mitochondrial responses to forearm arterial occlusion and demonstrate the usefulness of bbNIRS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信