Shijie Fang, Yifan Chen, Xianwei Wu, Nuo Zhao, Yong Liu
{"title":"Radon exhalation rate prediction and early warning model based on VMD-GRU and similar day analysis.","authors":"Shijie Fang, Yifan Chen, Xianwei Wu, Nuo Zhao, Yong Liu","doi":"10.1016/j.jenvrad.2024.107593","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the safety and reliability of radon exhalation rate monitoring systems, this study introduces an early warning method that integrates a VMD-GRU prediction model with a similar day analysis. Initially, radon exhalation rate data are decomposed into components with different informational content using the Variational Mode Decomposition (VMD) algorithm. Each component is forecasted by using the Gated Recurrent Unit (GRU) algorithm, and these forecasts are aggregated to estimate the overall radon exhalation rate. The effectiveness of the VMD-GRU model is validated through comparisons with ELMAN, LSTM, GRU,VMD-ELMAN and VMD-LSTM models. Finally, by combining the VMD-GRU model's outcomes with the similar day analysis, the system performs real-time monitoring and anomaly detection of radon exhalation rates. The results demonstrate that the proposed model effectively identifies and early warnings to abnormal radon fluctuations, significantly enhancing the precision of anomaly early warnings and providing robust decision support for radon monitoring and control, thus paving new paths for similar early warning systems.</p>","PeriodicalId":15667,"journal":{"name":"Journal of environmental radioactivity","volume":"281 ","pages":"107593"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental radioactivity","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvrad.2024.107593","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the safety and reliability of radon exhalation rate monitoring systems, this study introduces an early warning method that integrates a VMD-GRU prediction model with a similar day analysis. Initially, radon exhalation rate data are decomposed into components with different informational content using the Variational Mode Decomposition (VMD) algorithm. Each component is forecasted by using the Gated Recurrent Unit (GRU) algorithm, and these forecasts are aggregated to estimate the overall radon exhalation rate. The effectiveness of the VMD-GRU model is validated through comparisons with ELMAN, LSTM, GRU,VMD-ELMAN and VMD-LSTM models. Finally, by combining the VMD-GRU model's outcomes with the similar day analysis, the system performs real-time monitoring and anomaly detection of radon exhalation rates. The results demonstrate that the proposed model effectively identifies and early warnings to abnormal radon fluctuations, significantly enhancing the precision of anomaly early warnings and providing robust decision support for radon monitoring and control, thus paving new paths for similar early warning systems.
期刊介绍:
The Journal of Environmental Radioactivity provides a coherent international forum for publication of original research or review papers on any aspect of the occurrence of radioactivity in natural systems.
Relevant subject areas range from applications of environmental radionuclides as mechanistic or timescale tracers of natural processes to assessments of the radioecological or radiological effects of ambient radioactivity. Papers deal with naturally occurring nuclides or with those created and released by man through nuclear weapons manufacture and testing, energy production, fuel-cycle technology, etc. Reports on radioactivity in the oceans, sediments, rivers, lakes, groundwaters, soils, atmosphere and all divisions of the biosphere are welcomed, but these should not simply be of a monitoring nature unless the data are particularly innovative.