Radon exhalation rate prediction and early warning model based on VMD-GRU and similar day analysis.

IF 1.9 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Shijie Fang, Yifan Chen, Xianwei Wu, Nuo Zhao, Yong Liu
{"title":"Radon exhalation rate prediction and early warning model based on VMD-GRU and similar day analysis.","authors":"Shijie Fang, Yifan Chen, Xianwei Wu, Nuo Zhao, Yong Liu","doi":"10.1016/j.jenvrad.2024.107593","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the safety and reliability of radon exhalation rate monitoring systems, this study introduces an early warning method that integrates a VMD-GRU prediction model with a similar day analysis. Initially, radon exhalation rate data are decomposed into components with different informational content using the Variational Mode Decomposition (VMD) algorithm. Each component is forecasted by using the Gated Recurrent Unit (GRU) algorithm, and these forecasts are aggregated to estimate the overall radon exhalation rate. The effectiveness of the VMD-GRU model is validated through comparisons with ELMAN, LSTM, GRU,VMD-ELMAN and VMD-LSTM models. Finally, by combining the VMD-GRU model's outcomes with the similar day analysis, the system performs real-time monitoring and anomaly detection of radon exhalation rates. The results demonstrate that the proposed model effectively identifies and early warnings to abnormal radon fluctuations, significantly enhancing the precision of anomaly early warnings and providing robust decision support for radon monitoring and control, thus paving new paths for similar early warning systems.</p>","PeriodicalId":15667,"journal":{"name":"Journal of environmental radioactivity","volume":"281 ","pages":"107593"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental radioactivity","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvrad.2024.107593","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the safety and reliability of radon exhalation rate monitoring systems, this study introduces an early warning method that integrates a VMD-GRU prediction model with a similar day analysis. Initially, radon exhalation rate data are decomposed into components with different informational content using the Variational Mode Decomposition (VMD) algorithm. Each component is forecasted by using the Gated Recurrent Unit (GRU) algorithm, and these forecasts are aggregated to estimate the overall radon exhalation rate. The effectiveness of the VMD-GRU model is validated through comparisons with ELMAN, LSTM, GRU,VMD-ELMAN and VMD-LSTM models. Finally, by combining the VMD-GRU model's outcomes with the similar day analysis, the system performs real-time monitoring and anomaly detection of radon exhalation rates. The results demonstrate that the proposed model effectively identifies and early warnings to abnormal radon fluctuations, significantly enhancing the precision of anomaly early warnings and providing robust decision support for radon monitoring and control, thus paving new paths for similar early warning systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of environmental radioactivity
Journal of environmental radioactivity 环境科学-环境科学
CiteScore
4.70
自引率
13.00%
发文量
209
审稿时长
73 days
期刊介绍: The Journal of Environmental Radioactivity provides a coherent international forum for publication of original research or review papers on any aspect of the occurrence of radioactivity in natural systems. Relevant subject areas range from applications of environmental radionuclides as mechanistic or timescale tracers of natural processes to assessments of the radioecological or radiological effects of ambient radioactivity. Papers deal with naturally occurring nuclides or with those created and released by man through nuclear weapons manufacture and testing, energy production, fuel-cycle technology, etc. Reports on radioactivity in the oceans, sediments, rivers, lakes, groundwaters, soils, atmosphere and all divisions of the biosphere are welcomed, but these should not simply be of a monitoring nature unless the data are particularly innovative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信