Omer Burak Demirel, Fahime Ghanbari, Christopher W Hoeger, Connie W Tsao, Adele Carty, Long H Ngo, Patrick Pierce, Scott Johnson, Kathryn Arcand, Jordan Street, Jennifer Rodriguez, Tess E Wallace, Kelvin Chow, Warren J Manning, Reza Nezafat
{"title":"Late gadolinium enhancement cardiovascular magnetic resonance with generative artificial intelligence.","authors":"Omer Burak Demirel, Fahime Ghanbari, Christopher W Hoeger, Connie W Tsao, Adele Carty, Long H Ngo, Patrick Pierce, Scott Johnson, Kathryn Arcand, Jordan Street, Jennifer Rodriguez, Tess E Wallace, Kelvin Chow, Warren J Manning, Reza Nezafat","doi":"10.1016/j.jocmr.2024.101127","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging enables imaging of scar/fibrosis and is a cornerstone of most CMR imaging protocols. CMR imaging can benefit from image acceleration; however, image acceleration in LGE remains challenging due to its limited signal-to-noise ratio. In this study, we sought to evaluate a rapid two-dimensional (2D) LGE imaging protocol using a generative artificial intelligence (AI) algorithm with inline reconstruction.</p><p><strong>Methods: </strong>A generative AI-based image enhancement was used to improve the sharpness of 2D LGE images acquired with low spatial resolution in the phase-encode direction. The generative AI model is an image enhancement technique built on the enhanced super-resolution generative adversarial network. The model was trained using balanced steady-state free-precession cine images, readily used for LGE without additional training. The model was implemented inline, allowing the reconstruction of images on the scanner console. We prospectively enrolled 100 patients (55 ± 14 years, 72 males) referred for clinical CMR at 3T. We collected three sets of LGE images in each subject, with in-plane spatial resolutions of 1.5 × 1.5-3-6 mm<sup>2</sup>. The generative AI model enhanced in-plane resolution to 1.5 × 1.5 mm<sup>2</sup> from the low-resolution counterparts. Images were compared using a blur metric, quantifying the perceived image sharpness (0 = sharpest, 1 = blurriest). LGE image sharpness (using a 5-point scale) was assessed by three independent readers.</p><p><strong>Results: </strong>The scan times for the three imaging sets were 15 ± 3, 9 ± 2, and 6 ± 1 s, with inline generative AI-based images reconstructed time of ∼37 ms. The generative AI-based model improved visual image sharpness, resulting in lower blur metric compared to low-resolution counterparts (AI-enhanced from 1.5 × 3 mm<sup>2</sup> resolution: 0.3 ± 0.03 vs 0.35 ± 0.03, P < 0.01). Meanwhile, AI-enhanced images from 1.5 × 3 mm<sup>2</sup> resolution and original LGE images showed similar blur metric (0.30 ± 0.03 vs 0.31 ± 0.03, P = 1.0) Additionally, there was an overall 18% improvement in image sharpness between AI-enhanced images from 1.5 × 3 mm<sup>2</sup> resolution and original LGE images in the subjective blurriness score (P < 0.01).</p><p><strong>Conclusion: </strong>The generative AI-based model enhances the image quality of 2D LGE images while reducing the scan time and preserving imaging sharpness. Further evaluation in a large cohort is needed to assess the clinical utility of AI-enhanced LGE images for scar evaluation, as this proof-of-concept study does not provide evidence of an impact on diagnosis.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101127"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101127","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging enables imaging of scar/fibrosis and is a cornerstone of most CMR imaging protocols. CMR imaging can benefit from image acceleration; however, image acceleration in LGE remains challenging due to its limited signal-to-noise ratio. In this study, we sought to evaluate a rapid two-dimensional (2D) LGE imaging protocol using a generative artificial intelligence (AI) algorithm with inline reconstruction.
Methods: A generative AI-based image enhancement was used to improve the sharpness of 2D LGE images acquired with low spatial resolution in the phase-encode direction. The generative AI model is an image enhancement technique built on the enhanced super-resolution generative adversarial network. The model was trained using balanced steady-state free-precession cine images, readily used for LGE without additional training. The model was implemented inline, allowing the reconstruction of images on the scanner console. We prospectively enrolled 100 patients (55 ± 14 years, 72 males) referred for clinical CMR at 3T. We collected three sets of LGE images in each subject, with in-plane spatial resolutions of 1.5 × 1.5-3-6 mm2. The generative AI model enhanced in-plane resolution to 1.5 × 1.5 mm2 from the low-resolution counterparts. Images were compared using a blur metric, quantifying the perceived image sharpness (0 = sharpest, 1 = blurriest). LGE image sharpness (using a 5-point scale) was assessed by three independent readers.
Results: The scan times for the three imaging sets were 15 ± 3, 9 ± 2, and 6 ± 1 s, with inline generative AI-based images reconstructed time of ∼37 ms. The generative AI-based model improved visual image sharpness, resulting in lower blur metric compared to low-resolution counterparts (AI-enhanced from 1.5 × 3 mm2 resolution: 0.3 ± 0.03 vs 0.35 ± 0.03, P < 0.01). Meanwhile, AI-enhanced images from 1.5 × 3 mm2 resolution and original LGE images showed similar blur metric (0.30 ± 0.03 vs 0.31 ± 0.03, P = 1.0) Additionally, there was an overall 18% improvement in image sharpness between AI-enhanced images from 1.5 × 3 mm2 resolution and original LGE images in the subjective blurriness score (P < 0.01).
Conclusion: The generative AI-based model enhances the image quality of 2D LGE images while reducing the scan time and preserving imaging sharpness. Further evaluation in a large cohort is needed to assess the clinical utility of AI-enhanced LGE images for scar evaluation, as this proof-of-concept study does not provide evidence of an impact on diagnosis.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.