Alexandra F DeJong Lempke, Adam P Audet, Marni G Wasserman, Amanda C Melvin, Katherine Soldes, Ella Heithoff, Sneh Shah, Kenneth M Kozloff, Adam S Lepley
{"title":"Biomechanical differences and variability during sustained motorized treadmill running versus outdoor overground running using wearable sensors.","authors":"Alexandra F DeJong Lempke, Adam P Audet, Marni G Wasserman, Amanda C Melvin, Katherine Soldes, Ella Heithoff, Sneh Shah, Kenneth M Kozloff, Adam S Lepley","doi":"10.1016/j.jbiomech.2024.112443","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to compare running biomechanics and biomechanical variability across 3 run segments and between conditions for 5-km outdoor overground and indoor treadmill running. Seventy-one recreationally-active adults (31F, 40 M; age: 37 ± 11 years; body mass index: 22.9 ± 2.5 kg/m<sup>2</sup>) completed aerobic fitness assessments at baseline (VO<sub>2</sub>max), outdoor overground 5 km runs on a standardized route, and indoor treadmill 5 km runs on a motorized system (12.6 ± 4.9 days apart). Wearable sensors recorded step-by-step spatiotemporal, kinetic, and kinematic biomechanics. Repeated measures analyses of covariance were used to compare mean and coefficient of variation (CV) of sensor-derived metrics across run segments, conditions, and limbs (covariates: pace, VO<sub>2</sub>max). Tukey's post-hoc tests with mean differences and Cohen's d effect sizes were used to determine the difference magnitudes across comparisons. Most biomechanical measures significantly differed between running conditions (p < 0.001); contact time (mean difference and standard error: 8 ± 3 ms; d = 0.20), stride length (0.20 ± 0.12 m; d: 0.31), kinetics (shock, impact, braking; 0.17-1.30 g; d-range: 0.36-0.57), and pronation velocity (138 ± 16°/s; d: 0.61) were all higher during indoor treadmill running. Indoor treadmill running biomechanics CV were significantly higher for most measures compared to outdoor overground running (p < 0.001; d-range: 0.18-0.52). Only spatiotemporal measures and CV significantly differed across run segments (d-range: 0.16-0.68). Clinicians should expect that indoor treadmill biomechanics, particularly kinetic and pronation, will be significantly higher than patients' outdoor overground running biomechanics and tailor subsequent recommendations accordingly. Furthermore, clinicians should expect that indoor treadmill running analyses may result in more variable biomechanics, potentially attributed to consistent speed and surface, and tailor assessments to preferred run environments.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"178 ","pages":"112443"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2024.112443","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to compare running biomechanics and biomechanical variability across 3 run segments and between conditions for 5-km outdoor overground and indoor treadmill running. Seventy-one recreationally-active adults (31F, 40 M; age: 37 ± 11 years; body mass index: 22.9 ± 2.5 kg/m2) completed aerobic fitness assessments at baseline (VO2max), outdoor overground 5 km runs on a standardized route, and indoor treadmill 5 km runs on a motorized system (12.6 ± 4.9 days apart). Wearable sensors recorded step-by-step spatiotemporal, kinetic, and kinematic biomechanics. Repeated measures analyses of covariance were used to compare mean and coefficient of variation (CV) of sensor-derived metrics across run segments, conditions, and limbs (covariates: pace, VO2max). Tukey's post-hoc tests with mean differences and Cohen's d effect sizes were used to determine the difference magnitudes across comparisons. Most biomechanical measures significantly differed between running conditions (p < 0.001); contact time (mean difference and standard error: 8 ± 3 ms; d = 0.20), stride length (0.20 ± 0.12 m; d: 0.31), kinetics (shock, impact, braking; 0.17-1.30 g; d-range: 0.36-0.57), and pronation velocity (138 ± 16°/s; d: 0.61) were all higher during indoor treadmill running. Indoor treadmill running biomechanics CV were significantly higher for most measures compared to outdoor overground running (p < 0.001; d-range: 0.18-0.52). Only spatiotemporal measures and CV significantly differed across run segments (d-range: 0.16-0.68). Clinicians should expect that indoor treadmill biomechanics, particularly kinetic and pronation, will be significantly higher than patients' outdoor overground running biomechanics and tailor subsequent recommendations accordingly. Furthermore, clinicians should expect that indoor treadmill running analyses may result in more variable biomechanics, potentially attributed to consistent speed and surface, and tailor assessments to preferred run environments.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.