Ionic conducting hydrogels as biomedical materials: classification, design strategies, and skin tissue engineering applications.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Wanping Zhang, Zhe Li, Qianjie Zhang, Shilian Zheng, Zijia Zhang, Simin Chen, Zixin Wang, Dongmei Zhang
{"title":"Ionic conducting hydrogels as biomedical materials: classification, design strategies, and skin tissue engineering applications.","authors":"Wanping Zhang, Zhe Li, Qianjie Zhang, Shilian Zheng, Zijia Zhang, Simin Chen, Zixin Wang, Dongmei Zhang","doi":"10.1080/09205063.2024.2434300","DOIUrl":null,"url":null,"abstract":"<p><p>Ionically conductive hydrogels (ICHs) are considered promising flexible electronic devices and various wearable sensors due to the integration of the conductive performance and soft nature of human tissue-like materials with mechanical and sensory traits. Recently, substantial progress has been made in the research of ICHs, including high conductivity, solution processability, strong adhesion, high stretchability, high self-healing ability, and good biocompatibility. These advanced researches also promote their excellent application prospects in medical monitoring, sports health, smart wear, and other fields. This article reviewed ICHs' current classification and design strategies in biomedical applications and the structure-activity relationship of the interface between biological systems and electronics. Furthermore, the typical cases of frontiers of skin interface applications of ICHs were elaborated in transdermal drug delivery, wound healing, disease diagnosis and treatment, and human-computer interaction. This article aims to inspire related research on ionically conductive hydrogels in the biomedical field and promote the innovation and application of flexible wearable electronic device technology.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-24"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2434300","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ionically conductive hydrogels (ICHs) are considered promising flexible electronic devices and various wearable sensors due to the integration of the conductive performance and soft nature of human tissue-like materials with mechanical and sensory traits. Recently, substantial progress has been made in the research of ICHs, including high conductivity, solution processability, strong adhesion, high stretchability, high self-healing ability, and good biocompatibility. These advanced researches also promote their excellent application prospects in medical monitoring, sports health, smart wear, and other fields. This article reviewed ICHs' current classification and design strategies in biomedical applications and the structure-activity relationship of the interface between biological systems and electronics. Furthermore, the typical cases of frontiers of skin interface applications of ICHs were elaborated in transdermal drug delivery, wound healing, disease diagnosis and treatment, and human-computer interaction. This article aims to inspire related research on ionically conductive hydrogels in the biomedical field and promote the innovation and application of flexible wearable electronic device technology.

离子导电水凝胶作为生物医学材料:分类、设计策略和皮肤组织工程应用。
离子导电水凝胶(ICHs)被认为是有前途的柔性电子器件和各种可穿戴传感器,因为它将导电性能和柔软的人体组织样材料与机械和感官特性相结合。近年来,ICHs的研究取得了实质性进展,包括高导电性、溶液可加工性、强粘附性、高拉伸性、高自愈能力和良好的生物相容性。这些先进的研究也促进了其在医疗监测、运动健康、智能穿戴等领域的良好应用前景。本文综述了ICHs在生物医学应用中的分类和设计策略,以及生物系统与电子学之间界面的构效关系。阐述了ICHs皮肤界面应用领域的典型案例,包括经皮给药、伤口愈合、疾病诊疗、人机交互等。本文旨在启发离子导电水凝胶在生物医学领域的相关研究,促进柔性可穿戴电子设备技术的创新与应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信