Achmad Ramadhanna'il Rasjava, Desy Kurniawati, Wa Ode Sri Rizki, Neng Fisheri Kurniati, Rukman Hertadi
{"title":"Development of inulin nanocarrier for effective oral delivery of insulin: synthesize, optimization, characterization, and biophysical study.","authors":"Achmad Ramadhanna'il Rasjava, Desy Kurniawati, Wa Ode Sri Rizki, Neng Fisheri Kurniati, Rukman Hertadi","doi":"10.1080/09205063.2024.2436297","DOIUrl":null,"url":null,"abstract":"<p><p>The susceptibility of insulin against gastric acid degradation presents a major challenge for oral insulin delivery. The potential of biopolymer-based nanocarriers was investigated in order to address this issue. Inulin, a biopolymer produced by the halophilic bacterium Salinivibrio sp. GM01, has been evaluated for its effectiveness as an insulin nanocarrier. Using central composite design (CCD) method, the optimum condition of inulin-encapsulated insulin (I-In) was achieved at 53 mg of inulin stirred at 17,800 rpm for 10 min, resulting in spherical I-In nanoparticles (I-In NPs) with an average diameter of 416 ± 32 nm and encapsulation efficiency of 87.04 ± 3.01%. The insulin release profile of I-In NPs in simulated gastric fluid follows a burst pattern. Biophysical analysis revealed that insulin in I-In NPs had higher conformational stability than the free state (FS) insulin, as evidenced by an increase in denaturation half-life up to 60 min and the transition enthalpy by 0.29 and 1.53 kcal/mol for secondary and tertiary structures, respectively. Furthermore, preliminary <i>in vivo</i> studies showed that I-In NPs showed significant effect compared to FS insulin for up to 15% in blood glucose level reduction. This study demonstrates the potential of I-In NPs as a promising candidate for antidiabetic therapy and an effective oral delivery system.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-24"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2436297","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The susceptibility of insulin against gastric acid degradation presents a major challenge for oral insulin delivery. The potential of biopolymer-based nanocarriers was investigated in order to address this issue. Inulin, a biopolymer produced by the halophilic bacterium Salinivibrio sp. GM01, has been evaluated for its effectiveness as an insulin nanocarrier. Using central composite design (CCD) method, the optimum condition of inulin-encapsulated insulin (I-In) was achieved at 53 mg of inulin stirred at 17,800 rpm for 10 min, resulting in spherical I-In nanoparticles (I-In NPs) with an average diameter of 416 ± 32 nm and encapsulation efficiency of 87.04 ± 3.01%. The insulin release profile of I-In NPs in simulated gastric fluid follows a burst pattern. Biophysical analysis revealed that insulin in I-In NPs had higher conformational stability than the free state (FS) insulin, as evidenced by an increase in denaturation half-life up to 60 min and the transition enthalpy by 0.29 and 1.53 kcal/mol for secondary and tertiary structures, respectively. Furthermore, preliminary in vivo studies showed that I-In NPs showed significant effect compared to FS insulin for up to 15% in blood glucose level reduction. This study demonstrates the potential of I-In NPs as a promising candidate for antidiabetic therapy and an effective oral delivery system.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.