Vaikunthavasan Thiruchenthooran, Marta Świtalska, Gabriela Maciejewska, Anna Palko-Łabuz, Lorena Bonilla-Vidal, Joanna Wietrzyk, Eliana B Souto, Elena Sánchez-López, Anna Gliszczyńska
{"title":"Multifunctional Indomethacin Conjugates for the Development of Nanosystems Targeting Cancer Treatment.","authors":"Vaikunthavasan Thiruchenthooran, Marta Świtalska, Gabriela Maciejewska, Anna Palko-Łabuz, Lorena Bonilla-Vidal, Joanna Wietrzyk, Eliana B Souto, Elena Sánchez-López, Anna Gliszczyńska","doi":"10.2147/IJN.S477512","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>It is well known that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (IND) exhibits significant anticancer potential reported not only by in vitro and in vivo studies, but also in clinical trials. Despite promising results, IND is not widely used as an adjunctive agent in cancer therapy due to the occurrence of several gastrointestinal side effects, primarily after oral administration. Therefore, this study aimed to develop a nanosystem with reduced toxicity and risk of side effects for the delivery of IND for cancer treatment.</p><p><strong>Methods: </strong>IND was encapsulated in nanostructured lipid carriers (NLC) in the form of a phospholipid conjugate, where a covalent bond exists between the drug and phosphatidylcholine skeleton. For this purpose, seven new hybrid molecules were synthesized, and subsequently evaluated as anticancer agents in an in vitro model against selected cancer cell lines.</p><p><strong>Results: </strong>Biological studies demonstrated that the synthesized conjugates possessed excellent antiproliferative effects, exhibiting a 2.7-fold to even 100-fold higher activity against selected cancer cells, while remaining non-toxic to healthy cells. Based on biological studies and molecular calculations, heterosubstituted phosphatidylcholine containing IND and oleic acid (IND-OA-PC) in the <i>sn</i>-1 and <i>sn</i>-2 positions, respectively, was identified as the most potent molecule. Subsequently, IND-OA-PC was encapsulated in nanostructured lipid carriers (IND-OA-PC-NLC). The results revealed that IND-OA-PC-NLC has a spherical shape with an average diameter of 155 nm and a negatively charged surface (-17.4 ± 0.49 mV). In this study, it was proven that the encapsulated conjugate of indomethacin with PC exhibits high activity against triple-negative (TNBC, Her2-, PR-, and ER-) breast cancer cells MDA-MB-468. While free IND was active at a concentration of 270.5 μM, in the form of the phospholipid conjugate (IND-OA-PC), it inhibited the growth of cancer cells at 67.5 μM and after conjugate encapsulation (IND-OA-PC-NLC) it was effective at only 10.3 μM.</p><p><strong>Conclusion: </strong>Our study revealed that the conjugation of NSAID with phosphatidylcholine and its combination with nanotechnology techniques create opportunities to repurpose well-known drugs from this group for new therapeutic applications.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"12695-12718"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S477512","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: It is well known that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (IND) exhibits significant anticancer potential reported not only by in vitro and in vivo studies, but also in clinical trials. Despite promising results, IND is not widely used as an adjunctive agent in cancer therapy due to the occurrence of several gastrointestinal side effects, primarily after oral administration. Therefore, this study aimed to develop a nanosystem with reduced toxicity and risk of side effects for the delivery of IND for cancer treatment.
Methods: IND was encapsulated in nanostructured lipid carriers (NLC) in the form of a phospholipid conjugate, where a covalent bond exists between the drug and phosphatidylcholine skeleton. For this purpose, seven new hybrid molecules were synthesized, and subsequently evaluated as anticancer agents in an in vitro model against selected cancer cell lines.
Results: Biological studies demonstrated that the synthesized conjugates possessed excellent antiproliferative effects, exhibiting a 2.7-fold to even 100-fold higher activity against selected cancer cells, while remaining non-toxic to healthy cells. Based on biological studies and molecular calculations, heterosubstituted phosphatidylcholine containing IND and oleic acid (IND-OA-PC) in the sn-1 and sn-2 positions, respectively, was identified as the most potent molecule. Subsequently, IND-OA-PC was encapsulated in nanostructured lipid carriers (IND-OA-PC-NLC). The results revealed that IND-OA-PC-NLC has a spherical shape with an average diameter of 155 nm and a negatively charged surface (-17.4 ± 0.49 mV). In this study, it was proven that the encapsulated conjugate of indomethacin with PC exhibits high activity against triple-negative (TNBC, Her2-, PR-, and ER-) breast cancer cells MDA-MB-468. While free IND was active at a concentration of 270.5 μM, in the form of the phospholipid conjugate (IND-OA-PC), it inhibited the growth of cancer cells at 67.5 μM and after conjugate encapsulation (IND-OA-PC-NLC) it was effective at only 10.3 μM.
Conclusion: Our study revealed that the conjugation of NSAID with phosphatidylcholine and its combination with nanotechnology techniques create opportunities to repurpose well-known drugs from this group for new therapeutic applications.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.