Multifunctional Indomethacin Conjugates for the Development of Nanosystems Targeting Cancer Treatment.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY
International Journal of Nanomedicine Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI:10.2147/IJN.S477512
Vaikunthavasan Thiruchenthooran, Marta Świtalska, Gabriela Maciejewska, Anna Palko-Łabuz, Lorena Bonilla-Vidal, Joanna Wietrzyk, Eliana B Souto, Elena Sánchez-López, Anna Gliszczyńska
{"title":"Multifunctional Indomethacin Conjugates for the Development of Nanosystems Targeting Cancer Treatment.","authors":"Vaikunthavasan Thiruchenthooran, Marta Świtalska, Gabriela Maciejewska, Anna Palko-Łabuz, Lorena Bonilla-Vidal, Joanna Wietrzyk, Eliana B Souto, Elena Sánchez-López, Anna Gliszczyńska","doi":"10.2147/IJN.S477512","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>It is well known that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (IND) exhibits significant anticancer potential reported not only by in vitro and in vivo studies, but also in clinical trials. Despite promising results, IND is not widely used as an adjunctive agent in cancer therapy due to the occurrence of several gastrointestinal side effects, primarily after oral administration. Therefore, this study aimed to develop a nanosystem with reduced toxicity and risk of side effects for the delivery of IND for cancer treatment.</p><p><strong>Methods: </strong>IND was encapsulated in nanostructured lipid carriers (NLC) in the form of a phospholipid conjugate, where a covalent bond exists between the drug and phosphatidylcholine skeleton. For this purpose, seven new hybrid molecules were synthesized, and subsequently evaluated as anticancer agents in an in vitro model against selected cancer cell lines.</p><p><strong>Results: </strong>Biological studies demonstrated that the synthesized conjugates possessed excellent antiproliferative effects, exhibiting a 2.7-fold to even 100-fold higher activity against selected cancer cells, while remaining non-toxic to healthy cells. Based on biological studies and molecular calculations, heterosubstituted phosphatidylcholine containing IND and oleic acid (IND-OA-PC) in the <i>sn</i>-1 and <i>sn</i>-2 positions, respectively, was identified as the most potent molecule. Subsequently, IND-OA-PC was encapsulated in nanostructured lipid carriers (IND-OA-PC-NLC). The results revealed that IND-OA-PC-NLC has a spherical shape with an average diameter of 155 nm and a negatively charged surface (-17.4 ± 0.49 mV). In this study, it was proven that the encapsulated conjugate of indomethacin with PC exhibits high activity against triple-negative (TNBC, Her2-, PR-, and ER-) breast cancer cells MDA-MB-468. While free IND was active at a concentration of 270.5 μM, in the form of the phospholipid conjugate (IND-OA-PC), it inhibited the growth of cancer cells at 67.5 μM and after conjugate encapsulation (IND-OA-PC-NLC) it was effective at only 10.3 μM.</p><p><strong>Conclusion: </strong>Our study revealed that the conjugation of NSAID with phosphatidylcholine and its combination with nanotechnology techniques create opportunities to repurpose well-known drugs from this group for new therapeutic applications.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"12695-12718"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S477512","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: It is well known that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (IND) exhibits significant anticancer potential reported not only by in vitro and in vivo studies, but also in clinical trials. Despite promising results, IND is not widely used as an adjunctive agent in cancer therapy due to the occurrence of several gastrointestinal side effects, primarily after oral administration. Therefore, this study aimed to develop a nanosystem with reduced toxicity and risk of side effects for the delivery of IND for cancer treatment.

Methods: IND was encapsulated in nanostructured lipid carriers (NLC) in the form of a phospholipid conjugate, where a covalent bond exists between the drug and phosphatidylcholine skeleton. For this purpose, seven new hybrid molecules were synthesized, and subsequently evaluated as anticancer agents in an in vitro model against selected cancer cell lines.

Results: Biological studies demonstrated that the synthesized conjugates possessed excellent antiproliferative effects, exhibiting a 2.7-fold to even 100-fold higher activity against selected cancer cells, while remaining non-toxic to healthy cells. Based on biological studies and molecular calculations, heterosubstituted phosphatidylcholine containing IND and oleic acid (IND-OA-PC) in the sn-1 and sn-2 positions, respectively, was identified as the most potent molecule. Subsequently, IND-OA-PC was encapsulated in nanostructured lipid carriers (IND-OA-PC-NLC). The results revealed that IND-OA-PC-NLC has a spherical shape with an average diameter of 155 nm and a negatively charged surface (-17.4 ± 0.49 mV). In this study, it was proven that the encapsulated conjugate of indomethacin with PC exhibits high activity against triple-negative (TNBC, Her2-, PR-, and ER-) breast cancer cells MDA-MB-468. While free IND was active at a concentration of 270.5 μM, in the form of the phospholipid conjugate (IND-OA-PC), it inhibited the growth of cancer cells at 67.5 μM and after conjugate encapsulation (IND-OA-PC-NLC) it was effective at only 10.3 μM.

Conclusion: Our study revealed that the conjugation of NSAID with phosphatidylcholine and its combination with nanotechnology techniques create opportunities to repurpose well-known drugs from this group for new therapeutic applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信