Design Strategies and Application Potential of Multifunctional Hydrogels for Promoting Angiogenesis.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY
International Journal of Nanomedicine Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI:10.2147/IJN.S495971
Menglei Wang, Jiawen Chen, Yawen Luo, Meixin Feng, Qianwen Yang, Yingmei Tang, Ziyi Tang, Wantong Xiao, Yue Zheng, Li Li
{"title":"Design Strategies and Application Potential of Multifunctional Hydrogels for Promoting Angiogenesis.","authors":"Menglei Wang, Jiawen Chen, Yawen Luo, Meixin Feng, Qianwen Yang, Yingmei Tang, Ziyi Tang, Wantong Xiao, Yue Zheng, Li Li","doi":"10.2147/IJN.S495971","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels can be rationally designed as multifunctional platforms with structures and functions for various biomedical applications. Because of their excellent biochemical and mechanical properties, hydrogels have shown great potential for promoting angiogenesis, and an increasing amount of research has been devoted to designing and developing new hydrogels. However, a systematic and detailed review of hydrogels that promote angiogenesis is lacking. This paper comprehensively summarizes the design strategies of different kinds of functional hydrogels that promote angiogenesis, with anti-oxidant, substance-delivery, stimulus-responsive, self-healing, conductive, and wound-monitoring properties. The applications of hydrogels in wound healing, bone regeneration, and treatment of myocardial ischemia are discussed. Finally, future development directions of functional hydrogels promoting angiogenesis are proposed along with new strategies for the treatment of related diseases.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"12719-12742"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S495971","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels can be rationally designed as multifunctional platforms with structures and functions for various biomedical applications. Because of their excellent biochemical and mechanical properties, hydrogels have shown great potential for promoting angiogenesis, and an increasing amount of research has been devoted to designing and developing new hydrogels. However, a systematic and detailed review of hydrogels that promote angiogenesis is lacking. This paper comprehensively summarizes the design strategies of different kinds of functional hydrogels that promote angiogenesis, with anti-oxidant, substance-delivery, stimulus-responsive, self-healing, conductive, and wound-monitoring properties. The applications of hydrogels in wound healing, bone regeneration, and treatment of myocardial ischemia are discussed. Finally, future development directions of functional hydrogels promoting angiogenesis are proposed along with new strategies for the treatment of related diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信