{"title":"Extracellular Vesicles in Idiopathic Pulmonary Fibrosis: Pathogenesis, Biomarkers and Innovative Therapeutic Strategies.","authors":"Yibao Yang, Mengen Lv, Qing Xu, Xiaojuan Wang, Zhujun Fang","doi":"10.2147/IJN.S491335","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease caused by aberrant deposition of extracellular matrix in the lungs with significant morbidity and mortality. The therapeutic choices for IPF remain limited. Extracellular vesicles (EVs), as messengers for intercellular communication, are cell-secreted lipid bilayer nanoscale particles found in body fluids, and regulate the epithelial phenotype and profibrotic signaling pathways by transporting bioactive cargo to recipients in the pathogenesis of IPF. Furthermore, an increasing number of studies suggests that EVs derived from stem cells can be employed as a cell-free therapeutic approach for IPF, given their intrinsic tissue-homing capabilities and regeneration characteristics. This review highlights new sights of EVs in the pathogenesis of IPF, their potential as diagnostic and prognostic biomarkers, and prospects as novel drug delivery systems and next-generation therapeutics against IPF. Notably, bringing engineering strategies to EVs holds great promise for enhancing the therapeutic effect of anti-pulmonary fibrosis and promoting clinical transformation.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"19 ","pages":"12593-12614"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S491335","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease caused by aberrant deposition of extracellular matrix in the lungs with significant morbidity and mortality. The therapeutic choices for IPF remain limited. Extracellular vesicles (EVs), as messengers for intercellular communication, are cell-secreted lipid bilayer nanoscale particles found in body fluids, and regulate the epithelial phenotype and profibrotic signaling pathways by transporting bioactive cargo to recipients in the pathogenesis of IPF. Furthermore, an increasing number of studies suggests that EVs derived from stem cells can be employed as a cell-free therapeutic approach for IPF, given their intrinsic tissue-homing capabilities and regeneration characteristics. This review highlights new sights of EVs in the pathogenesis of IPF, their potential as diagnostic and prognostic biomarkers, and prospects as novel drug delivery systems and next-generation therapeutics against IPF. Notably, bringing engineering strategies to EVs holds great promise for enhancing the therapeutic effect of anti-pulmonary fibrosis and promoting clinical transformation.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.