Repurposing Drugs for Infectious Diseases by Graph Convolutional Network with Sensitivity-Based Graph Reduction.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Rongting Yue, Abhishek Dutta
{"title":"Repurposing Drugs for Infectious Diseases by Graph Convolutional Network with Sensitivity-Based Graph Reduction.","authors":"Rongting Yue, Abhishek Dutta","doi":"10.1007/s12539-024-00672-5","DOIUrl":null,"url":null,"abstract":"<p><p>Computational systems biology employs computational algorithms and integrates diverse data sources, such as gene expression profiles, molecular interactions, and network modeling, to identify promising drug candidates through repurposing existing compounds in response to urgent healthcare needs. This study tackles the urgent need for rapid therapeutic development against emerging infectious diseases. We introduce a novel analytic expression for sensitivity analysis based on the Kronecker product and enhance model prediction performance using Graph Convolutional Networks (GCNs) with sensitivity-based graph reduction. Our algorithm refines prediction performance by leveraging sensitivity-based graph reduction. By integrating RNA-seq data, molecular interactions, and GCNs, we identify disease-related genes and pathways, construct heterogeneous graph models, and predict potential drugs. This approach involves novel analytical expressions that assess sensitivity to model loss, employing the Kronecker product approach. Subgraph analysis identifies nodes for removal, leading to a refined graph used for model retraining. This cost-effective pipeline focuses on computational methods for drug repurposing, targeting infectious diseases such as Zika virus and COVID-19 infection. Applied to these infections, our methodology integrates 659 proteins and 703 drugs for Zika virus, and 495 proteins and 468 drugs for COVID-19, along with their interactions derived from gene expression profiles. Top candidate drugs, such as Betamethasone phosphate and Bizelesin for Zika virus, and Chloroquine, Heparin Disaccharide, and Resveratrol for COVID-19, were validated through literature review or docking analysis. This scalable approach demonstrates promise in repurposing drugs for urgent healthcare challenges.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00672-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Computational systems biology employs computational algorithms and integrates diverse data sources, such as gene expression profiles, molecular interactions, and network modeling, to identify promising drug candidates through repurposing existing compounds in response to urgent healthcare needs. This study tackles the urgent need for rapid therapeutic development against emerging infectious diseases. We introduce a novel analytic expression for sensitivity analysis based on the Kronecker product and enhance model prediction performance using Graph Convolutional Networks (GCNs) with sensitivity-based graph reduction. Our algorithm refines prediction performance by leveraging sensitivity-based graph reduction. By integrating RNA-seq data, molecular interactions, and GCNs, we identify disease-related genes and pathways, construct heterogeneous graph models, and predict potential drugs. This approach involves novel analytical expressions that assess sensitivity to model loss, employing the Kronecker product approach. Subgraph analysis identifies nodes for removal, leading to a refined graph used for model retraining. This cost-effective pipeline focuses on computational methods for drug repurposing, targeting infectious diseases such as Zika virus and COVID-19 infection. Applied to these infections, our methodology integrates 659 proteins and 703 drugs for Zika virus, and 495 proteins and 468 drugs for COVID-19, along with their interactions derived from gene expression profiles. Top candidate drugs, such as Betamethasone phosphate and Bizelesin for Zika virus, and Chloroquine, Heparin Disaccharide, and Resveratrol for COVID-19, were validated through literature review or docking analysis. This scalable approach demonstrates promise in repurposing drugs for urgent healthcare challenges.

基于灵敏度的图约简的图卷积网络对传染病药物的再利用。
计算系统生物学采用计算算法并集成各种数据源,如基因表达谱、分子相互作用和网络建模,通过重新利用现有化合物来识别有希望的候选药物,以响应紧急医疗保健需求。这项研究解决了针对新发传染病的快速治疗发展的迫切需要。我们引入了一种新的基于Kronecker积的灵敏度分析解析表达式,并使用基于灵敏度的图约简的图卷积网络(GCNs)增强模型预测性能。我们的算法通过利用基于灵敏度的图约简来改进预测性能。通过整合RNA-seq数据、分子相互作用和GCNs,我们可以识别疾病相关基因和途径,构建异构图模型,并预测潜在的药物。这种方法涉及新的分析表达式,评估敏感性的模型损失,采用克罗内克积方法。子图分析确定要删除的节点,从而生成用于模型再训练的精细图。这一具有成本效益的项目侧重于药物再利用的计算方法,针对寨卡病毒和COVID-19感染等传染病。应用于这些感染,我们的方法整合了用于寨卡病毒的659种蛋白质和703种药物,以及用于COVID-19的495种蛋白质和468种药物,以及来自基因表达谱的相互作用。通过文献综述或对接分析,验证了治疗寨卡病毒的磷酸倍他米松、比别列星、治疗新冠病毒的氯喹、双糖肝素、白藜芦醇等热门候选药物。这种可扩展的方法显示了重新利用药物应对紧急医疗保健挑战的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信