miRNA targeting Mpp53 is involved in UV-B irradiation resistance in Myzus persicae.

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Longchun He, Changli Yang, Jianyu Meng, Xue Tang, Changyu Zhang
{"title":"miRNA targeting Mpp53 is involved in UV-B irradiation resistance in Myzus persicae.","authors":"Longchun He, Changli Yang, Jianyu Meng, Xue Tang, Changyu Zhang","doi":"10.1111/1744-7917.13472","DOIUrl":null,"url":null,"abstract":"<p><p>Ultraviolet (UV) radiation, an environmental stressor, is crucial for the survival and adaptation of organisms. Myzus persicae, a global pest, is exposed to sunlight year-round, making it unable to avoid UV rays in its environment. MicroRNAs (miRNAs) are important posttranscriptional regulators of gene expression and mediate various biological processes. However, the role of miRNA in aphids in response to UV-B stress is unclear. In this study, Mpp53 expression level significantly increased with an increase in the duration of UV-B radiation, peaking at 2 h; knockdown of Mpp53 decreased the survival rate of aphids under UV-B stress, suggesting that Mpp53 is involved in aphid responses to UV-B. Here, we first predicted 8 miRNAs targeting Mpp53, and then screened for miRNAs related to UV-B resistance in aphids; of these, 5 miRNAs (miR-305-5p, novel_50, novel_80, novel_166, and novel_61) were found to target Mpp53. Luciferase reporter assays demonstrated that novel_61 binds to the noncoding region of Mpp53 and downregulates its expression. Overexpression of novel_61 in aphids decreased Mpp53 expression and caused significant mortality under UV-B irradiation. Furthermore, the aphids exhibited lower reproductive capacity, lower body weight, and shorter body length and width. This is the first study to systematically screen and identify miRNA related to aphid responses to UV-B stress and deepens our understanding of the molecular mechanism of insect responses to environmental stress, which may eventually aid in developing better control strategies.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13472","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultraviolet (UV) radiation, an environmental stressor, is crucial for the survival and adaptation of organisms. Myzus persicae, a global pest, is exposed to sunlight year-round, making it unable to avoid UV rays in its environment. MicroRNAs (miRNAs) are important posttranscriptional regulators of gene expression and mediate various biological processes. However, the role of miRNA in aphids in response to UV-B stress is unclear. In this study, Mpp53 expression level significantly increased with an increase in the duration of UV-B radiation, peaking at 2 h; knockdown of Mpp53 decreased the survival rate of aphids under UV-B stress, suggesting that Mpp53 is involved in aphid responses to UV-B. Here, we first predicted 8 miRNAs targeting Mpp53, and then screened for miRNAs related to UV-B resistance in aphids; of these, 5 miRNAs (miR-305-5p, novel_50, novel_80, novel_166, and novel_61) were found to target Mpp53. Luciferase reporter assays demonstrated that novel_61 binds to the noncoding region of Mpp53 and downregulates its expression. Overexpression of novel_61 in aphids decreased Mpp53 expression and caused significant mortality under UV-B irradiation. Furthermore, the aphids exhibited lower reproductive capacity, lower body weight, and shorter body length and width. This is the first study to systematically screen and identify miRNA related to aphid responses to UV-B stress and deepens our understanding of the molecular mechanism of insect responses to environmental stress, which may eventually aid in developing better control strategies.

以Mpp53为靶点的miRNA参与了桃蚜抗UV-B辐射的过程。
紫外线辐射是一种环境应激源,对生物的生存和适应至关重要。桃蚜是一种全球性害虫,常年暴露在阳光下,使其无法避免环境中的紫外线。MicroRNAs (miRNAs)是基因表达的重要转录后调控因子,介导多种生物过程。然而,在蚜虫对UV-B胁迫的反应中,miRNA的作用尚不清楚。在本研究中,Mpp53的表达水平随着UV-B照射时间的增加而显著升高,在照射2 h时达到峰值;Mpp53基因的敲低降低了蚜虫在UV-B胁迫下的存活率,提示Mpp53参与了蚜虫对UV-B的应答。在这里,我们首先预测了8个靶向Mpp53的miRNAs,然后筛选了与蚜虫抗UV-B相关的miRNAs;其中,5种mirna (miR-305-5p, novel_50, novel_80, novel_166和novel_61)被发现靶向Mpp53。荧光素酶报告基因实验表明,novel_61结合到Mpp53的非编码区并下调其表达。在UV-B照射下,过表达novel_61的蚜虫会降低Mpp53的表达,造成显著的死亡。此外,蚜虫的繁殖能力较低,体重较轻,体长和体宽较短。这是第一个系统筛选和鉴定与蚜虫对UV-B胁迫反应相关的miRNA的研究,加深了我们对昆虫对环境胁迫反应的分子机制的理解,最终可能有助于制定更好的控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信