Genetic machinery which accompanies metaplasticity operates differentially in experimental model of autism.

IF 1.7 4区 医学 Q3 DEVELOPMENTAL BIOLOGY
Esra Tufan Benli, Ercan Babur, Nurcan Dursun, Hatice Saray, Özlem Barutçu, Cem Süer
{"title":"Genetic machinery which accompanies metaplasticity operates differentially in experimental model of autism.","authors":"Esra Tufan Benli, Ercan Babur, Nurcan Dursun, Hatice Saray, Özlem Barutçu, Cem Süer","doi":"10.1002/jdn.10398","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigated metaplasticity-related mRNA expressions in valproic acid (VPA)-rats, focusing on the PI3K/AKT pathway. Wistar dams were treated with a single intraperitoneal injection of 600 mg/kg VPA or saline on embryonic day E12.5 or an equal volume of saline solution. Three behavioral tests were conducted on these males' offspring: grid-walking test, negative geotaxis test, and three-chamber social interaction test. Metaplasticity was induced in 60-day-old male progeny by giving high-frequency stimulation for 5 minutes following low-frequency stimulation to the perforant pathway. For the baseline stimulation protocol (n = 6), stimulation was delivered to the dentate gyrus at the previously determined stimulation intensity (0.33 Hz 0.175 msec 30 s) for 75 min. The percent change of slope of field excitatory postsynaptic potential (fEPSP) and amplitude of population spike were calculated 55-60 min after induction protocol. The mRNA levels of PI3K, PTEN, AKT, GSK-3β, and MAPT were measured in the hippocampus by using quantitative rt-PCR. We found that offspring of VPA-treated rats showed significantly impaired sensorimotor coordination, decreased sociability, impaired preference for social novelty, and reduced input-output curve of fEPSP slope, compared to control animals. Despite a similar metaplastic response, mRNA levels of genes of interest were similar but considerably down-regulated after induction in offspring of VPA-treated dams. Our study provides evidence that the induced expression of autism-related genes has evolved to enable an adaptation mechanism during metaplastic control of long-term potentiation.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":" ","pages":"e10398"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jdn.10398","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigated metaplasticity-related mRNA expressions in valproic acid (VPA)-rats, focusing on the PI3K/AKT pathway. Wistar dams were treated with a single intraperitoneal injection of 600 mg/kg VPA or saline on embryonic day E12.5 or an equal volume of saline solution. Three behavioral tests were conducted on these males' offspring: grid-walking test, negative geotaxis test, and three-chamber social interaction test. Metaplasticity was induced in 60-day-old male progeny by giving high-frequency stimulation for 5 minutes following low-frequency stimulation to the perforant pathway. For the baseline stimulation protocol (n = 6), stimulation was delivered to the dentate gyrus at the previously determined stimulation intensity (0.33 Hz 0.175 msec 30 s) for 75 min. The percent change of slope of field excitatory postsynaptic potential (fEPSP) and amplitude of population spike were calculated 55-60 min after induction protocol. The mRNA levels of PI3K, PTEN, AKT, GSK-3β, and MAPT were measured in the hippocampus by using quantitative rt-PCR. We found that offspring of VPA-treated rats showed significantly impaired sensorimotor coordination, decreased sociability, impaired preference for social novelty, and reduced input-output curve of fEPSP slope, compared to control animals. Despite a similar metaplastic response, mRNA levels of genes of interest were similar but considerably down-regulated after induction in offspring of VPA-treated dams. Our study provides evidence that the induced expression of autism-related genes has evolved to enable an adaptation mechanism during metaplastic control of long-term potentiation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信