Reduced oxycodone brain delivery in rats due to lipopolysaccharide-induced inflammation: microdialysis insights into brain disposition and sex-specific pharmacokinetics.
Frida Bällgren, Margareta Hammarlund-Udenaes, Irena Loryan
{"title":"Reduced oxycodone brain delivery in rats due to lipopolysaccharide-induced inflammation: microdialysis insights into brain disposition and sex-specific pharmacokinetics.","authors":"Frida Bällgren, Margareta Hammarlund-Udenaes, Irena Loryan","doi":"10.1186/s12987-024-00598-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oxycodone, a widely used opioid analgesic, has an unbound brain-to-plasma concentration ratio (K<sub>p,uu</sub>) greater than unity, indicating active uptake across brain barriers associated with the putative proton-coupled organic cation (H<sup>+</sup>/OC) antiporter system. With this study, we aimed to elucidate oxycodone's CNS disposition during lipopolysaccharide (LPS)-induced systemic inflammation in Sprague-Dawley rats.</p><p><strong>Methods: </strong>Using brain microdialysis, we dynamically and simultaneously monitored unbound oxycodone concentrations in blood, striatum, lateral ventricle, and cisterna magna following intravenous administration of oxycodone post-LPS challenge.</p><p><strong>Results: </strong>Our results indicated a reduced, sex-independent brain net uptake of oxycodone across the blood-brain barrier (BBB) measured in the striatum. Notably, the LPS challenge has significantly altered the systemic pharmacokinetics (PK) of oxycodone, in a sex-specific manner, leading to lower clearance and higher blood concentrations in females compared to LPS-treated males and healthy rats of both sexes. Proteomic analysis using Olink Target 96 Mouse Exploratory assay confirmed the induction of systemic inflammation and neuroinflammation. The inflammation led to an increased paracellular transport, measured using 4 kDa dextran, while preserving net active uptake of oxycodone across both BBB and the blood-cerebrospinal fluid barrier (BCSFB), with K<sub>p,uu</sub> values of 2.7 and 2.5, respectively. The extent of uptake was 1.6-fold lower (p < 0.0001) at the BBB and unchanged at the BCSFB after the LPS challenge compared to that in healthy rats. However, the mean exposure of unbound oxycodone in the brain following LPS was similar to that in healthy rats, primarily due to the LPS-induced changes in systemic exposure.</p><p><strong>Conclusions: </strong>These findings highlight the dissimilar responses at blood-brain interfaces during LPS-induced inflammation. Advancing the knowledge of neuropharmacokinetic mechanisms, specifically those involving the H<sup>+</sup>/OC antiporter system, will enable the development of more effective therapeutic strategies during inflammation conditions.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"95"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00598-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Oxycodone, a widely used opioid analgesic, has an unbound brain-to-plasma concentration ratio (Kp,uu) greater than unity, indicating active uptake across brain barriers associated with the putative proton-coupled organic cation (H+/OC) antiporter system. With this study, we aimed to elucidate oxycodone's CNS disposition during lipopolysaccharide (LPS)-induced systemic inflammation in Sprague-Dawley rats.
Methods: Using brain microdialysis, we dynamically and simultaneously monitored unbound oxycodone concentrations in blood, striatum, lateral ventricle, and cisterna magna following intravenous administration of oxycodone post-LPS challenge.
Results: Our results indicated a reduced, sex-independent brain net uptake of oxycodone across the blood-brain barrier (BBB) measured in the striatum. Notably, the LPS challenge has significantly altered the systemic pharmacokinetics (PK) of oxycodone, in a sex-specific manner, leading to lower clearance and higher blood concentrations in females compared to LPS-treated males and healthy rats of both sexes. Proteomic analysis using Olink Target 96 Mouse Exploratory assay confirmed the induction of systemic inflammation and neuroinflammation. The inflammation led to an increased paracellular transport, measured using 4 kDa dextran, while preserving net active uptake of oxycodone across both BBB and the blood-cerebrospinal fluid barrier (BCSFB), with Kp,uu values of 2.7 and 2.5, respectively. The extent of uptake was 1.6-fold lower (p < 0.0001) at the BBB and unchanged at the BCSFB after the LPS challenge compared to that in healthy rats. However, the mean exposure of unbound oxycodone in the brain following LPS was similar to that in healthy rats, primarily due to the LPS-induced changes in systemic exposure.
Conclusions: These findings highlight the dissimilar responses at blood-brain interfaces during LPS-induced inflammation. Advancing the knowledge of neuropharmacokinetic mechanisms, specifically those involving the H+/OC antiporter system, will enable the development of more effective therapeutic strategies during inflammation conditions.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).