Can Wang, Youhong Guan, Wanrong Wang, Binbin Zhang, Pulin Li, Rui Han, Wenlong Wu, Sijing Zhou, Ran Wang
{"title":"Characterization of a Putative Lysin from Enterococcus faecalis Phage IME-EFm1 and Determination of its Protective Efficacy in Mice.","authors":"Can Wang, Youhong Guan, Wanrong Wang, Binbin Zhang, Pulin Li, Rui Han, Wenlong Wu, Sijing Zhou, Ran Wang","doi":"10.1007/s00284-024-03973-6","DOIUrl":null,"url":null,"abstract":"<p><p>The rising tide of bacterial drug resistance has sparked renewed interest in bacteriophages, the natural predators of bacteria. Our study highlights IME-EFm1, a Caudoviricetes bacteriophage specifically targeting Enterococcus faecium. Through our investigations, we identified that the gene IME-EFm1-ORF24 encodes an amidase, referred to as gp24, with promising lytic capabilities. Remarkably, gp24 exhibited a wider lytic spectrum than its parent phage, successfully lysing 26 out of 32 E. faecium strains, compared to the phage's ability to lyse only 21. This protein demonstrated robust antibacterial activity, remaining effective at temperatures between 25 °C and 60 °C and across a pH range of 6 to 12. Additionally, gp24 displayed significant anti-biofilm properties, effectively dismantling established biofilms in vitro. In a mouse model of abdominal infection, gp24 achieved a 75% protection rate against a dose of 2 × 10<sup>9</sup> colony-forming units of E. faecium En383, significantly outperforming the control group (p < 0.05). These compelling results suggest that gp24 holds great potential as a novel antimicrobial agent for treating E. faecium infections.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 1","pages":"27"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-03973-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rising tide of bacterial drug resistance has sparked renewed interest in bacteriophages, the natural predators of bacteria. Our study highlights IME-EFm1, a Caudoviricetes bacteriophage specifically targeting Enterococcus faecium. Through our investigations, we identified that the gene IME-EFm1-ORF24 encodes an amidase, referred to as gp24, with promising lytic capabilities. Remarkably, gp24 exhibited a wider lytic spectrum than its parent phage, successfully lysing 26 out of 32 E. faecium strains, compared to the phage's ability to lyse only 21. This protein demonstrated robust antibacterial activity, remaining effective at temperatures between 25 °C and 60 °C and across a pH range of 6 to 12. Additionally, gp24 displayed significant anti-biofilm properties, effectively dismantling established biofilms in vitro. In a mouse model of abdominal infection, gp24 achieved a 75% protection rate against a dose of 2 × 109 colony-forming units of E. faecium En383, significantly outperforming the control group (p < 0.05). These compelling results suggest that gp24 holds great potential as a novel antimicrobial agent for treating E. faecium infections.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.