Joanna H Greenman, Lucie Moss, Shinjini Chakraborty, Bradley J Whitehead, Johan Palmfedt, Peter Nejsum, James P Hewitson, Ian S Hitchcock
{"title":"Brief report: Chronic murine schistosomiasis causes aberrant hemostasis.","authors":"Joanna H Greenman, Lucie Moss, Shinjini Chakraborty, Bradley J Whitehead, Johan Palmfedt, Peter Nejsum, James P Hewitson, Ian S Hitchcock","doi":"10.1016/j.exphem.2024.104689","DOIUrl":null,"url":null,"abstract":"<p><p>Schistosomiasis afflicts >250 million people worldwide, leading to an annual loss of >3 million disability-adjusted life years. Schistosoma mansoni causes intestinal schistosomiasis with parasite eggs either transversing intestinal tissue or lodging within the liver and other organs, causing intestinal hemorrhage and liver pathology. Large (∼1 cm) adult worms survive for years within blood vessels, but we lack a clear understanding of their impact on hemostasis. We used a chronic mouse model of schistosomiasis to determine the impact on platelet numbers, phenotype and function. Hemostatic function was assessed by platelet phenotyping (flow cytometry and proteomics), whole blood aggregometry, and longitudinal coagulometry. Although platelets from schistosome-infected mice lack elevated surface P-selectin and activated αIIbβ3, unbiased proteomic analysis reveals infection-induced increases in MHC-I, IgM and IgG antibodies, and complement components. Whole blood from schistosome-infected mice spontaneously aggregates in the absence of exogenous agonists. Conversely, prothrombin and activated partial thromboplastin times are prolonged at the chronic stage of infection (10-12 weeks). A mouse model of S. mansoni infection shows wide-ranging changes in hemostatic function which may have clinically relevant implications for populations in endemic regions.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104689"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exphem.2024.104689","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Schistosomiasis afflicts >250 million people worldwide, leading to an annual loss of >3 million disability-adjusted life years. Schistosoma mansoni causes intestinal schistosomiasis with parasite eggs either transversing intestinal tissue or lodging within the liver and other organs, causing intestinal hemorrhage and liver pathology. Large (∼1 cm) adult worms survive for years within blood vessels, but we lack a clear understanding of their impact on hemostasis. We used a chronic mouse model of schistosomiasis to determine the impact on platelet numbers, phenotype and function. Hemostatic function was assessed by platelet phenotyping (flow cytometry and proteomics), whole blood aggregometry, and longitudinal coagulometry. Although platelets from schistosome-infected mice lack elevated surface P-selectin and activated αIIbβ3, unbiased proteomic analysis reveals infection-induced increases in MHC-I, IgM and IgG antibodies, and complement components. Whole blood from schistosome-infected mice spontaneously aggregates in the absence of exogenous agonists. Conversely, prothrombin and activated partial thromboplastin times are prolonged at the chronic stage of infection (10-12 weeks). A mouse model of S. mansoni infection shows wide-ranging changes in hemostatic function which may have clinically relevant implications for populations in endemic regions.
期刊介绍:
Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.