Chitooligosaccharide-modified PLGA-loaded PPD nanoparticles ameliorated sepsis-associated acute kidney injury via the NF-κB signaling pathway.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Baifang Gong, Yawen Yu, Xinxin Bai, Yaping He, Tao Pan, Teng Liu, Zhixia Wang, Ke Liu, Huaying Fan
{"title":"Chitooligosaccharide-modified PLGA-loaded PPD nanoparticles ameliorated sepsis-associated acute kidney injury <i>via</i> the NF-κB signaling pathway.","authors":"Baifang Gong, Yawen Yu, Xinxin Bai, Yaping He, Tao Pan, Teng Liu, Zhixia Wang, Ke Liu, Huaying Fan","doi":"10.1080/03639045.2024.2434958","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Sepsis-associated acute kidney injury (SA-AKI) is a significant clinical challenge with high morbidity and mortality. Low bioavailability of protopanaxadiol (PPD) limits its clinical application. In this study, PPD was encapsulated with chitooligosaccharide (COS) modified polylactic-co-glycolic acid (PLGA) to develop novel nanomedicines for the treatment of SA-AKI.</p><p><strong>Methods: </strong>COS-PLGA-PPD nanoparticles were prepared by emulsified solvent evaporation method, and their properties were evaluated. <i>In vitro</i>, the anti-inflammatory and protective effects of COS-PLGA-PPD NPs were investigated in a cellular model of LPS-induced NRK-52E cells and their uptake in Caco-2 cells. Indicators of renal injury, inflammation, and NF-κB signaling pathway were evaluated by injecting LPS into SD rats and inducing SA-AKI model <i>in vivo</i>. The oral bioavailability of nanoparticles was evaluated by pharmacokinetics.</p><p><strong>Results: </strong>Compared with PPD and unmodified nanoparticles, COS-PLGA-PPD NPs were more stable, with a particle size of 139.69 nm, which enhanced the viability of NRK-52E cells, increased the uptake of Caco-2 cells, alleviated the symptoms of SA-AKI in rats, inhibited the NF-κB signaling pathway, reduced the expression of inflammatory factors, and had a bioavailability 1.7-fold that of PPD.</p><p><strong>Conclusion: </strong>COS-PLGA-PPD NPs ameliorate LPS-induced SA-AKI in rats by inhibiting the NF-κB signaling pathway, providing a basis for the treatment of SA-AKI.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1008-1020"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2434958","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Sepsis-associated acute kidney injury (SA-AKI) is a significant clinical challenge with high morbidity and mortality. Low bioavailability of protopanaxadiol (PPD) limits its clinical application. In this study, PPD was encapsulated with chitooligosaccharide (COS) modified polylactic-co-glycolic acid (PLGA) to develop novel nanomedicines for the treatment of SA-AKI.

Methods: COS-PLGA-PPD nanoparticles were prepared by emulsified solvent evaporation method, and their properties were evaluated. In vitro, the anti-inflammatory and protective effects of COS-PLGA-PPD NPs were investigated in a cellular model of LPS-induced NRK-52E cells and their uptake in Caco-2 cells. Indicators of renal injury, inflammation, and NF-κB signaling pathway were evaluated by injecting LPS into SD rats and inducing SA-AKI model in vivo. The oral bioavailability of nanoparticles was evaluated by pharmacokinetics.

Results: Compared with PPD and unmodified nanoparticles, COS-PLGA-PPD NPs were more stable, with a particle size of 139.69 nm, which enhanced the viability of NRK-52E cells, increased the uptake of Caco-2 cells, alleviated the symptoms of SA-AKI in rats, inhibited the NF-κB signaling pathway, reduced the expression of inflammatory factors, and had a bioavailability 1.7-fold that of PPD.

Conclusion: COS-PLGA-PPD NPs ameliorate LPS-induced SA-AKI in rats by inhibiting the NF-κB signaling pathway, providing a basis for the treatment of SA-AKI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信