Cortical complexity alterations in motor subtypes of Parkinson's disease: A surface-based morphometry analysis of fractal dimension

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Yousef Dehghan, Yashar Sarbaz
{"title":"Cortical complexity alterations in motor subtypes of Parkinson's disease: A surface-based morphometry analysis of fractal dimension","authors":"Yousef Dehghan,&nbsp;Yashar Sarbaz","doi":"10.1111/ejn.16612","DOIUrl":null,"url":null,"abstract":"<p>Based on motor symptoms, Parkinson's disease (PD) can be classified into tremor dominant (TD) and postural instability gait difficulty (PIGD) subtypes. Few studies have examined cortical complexity differences in PD motor subtypes. This study aimed to investigate differences in cortical complexity and grey matter volume (GMV) between TD and PIGD. We enrolled 36 TD patients, 27 PIGD patients and 66 healthy controls (HC) from the PPMI (Parkinson's Progression Markers Initiative) database. Voxel-based morphometry (VBM) and surface-based morphometry (SBM) were utilized to assess differences in GMV, cortical thickness and cortical complexity. The structural MRI data of participants was analysed using CAT12/SPM12 (<i>p</i> &lt; 0.05, FDR corrected). Additionally, correlations between clinical data and structural changes were examined (<i>p</i> &lt; 0.05, Holm-Bonferroni corrected). In comparison to both HC and TD groups, PIGD patients exhibited a significant fractal dimension (FD) decrease in many cortical regions. A significant negative correlation between age and FD was observed in the left insula for the PIGD patients and in the bilateral insula for the TD patients. However, no significant differences were found in GMV, cortical thickness or other complexity indices. Altered FD in the bilateral insula indicates that postural instability and gait disturbances may result from a failure to integrate information from various structures, whereas parkinsonian rest tremor is not associated with this integration. Also, widespread decreases in cortical FD demonstrate that FD is more sensitive than other complexity measures and can serve as a novel biomarker for identifying subtle changes in cortical morphology in the PIGD subtype.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"60 12","pages":"7249-7262"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16612","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Based on motor symptoms, Parkinson's disease (PD) can be classified into tremor dominant (TD) and postural instability gait difficulty (PIGD) subtypes. Few studies have examined cortical complexity differences in PD motor subtypes. This study aimed to investigate differences in cortical complexity and grey matter volume (GMV) between TD and PIGD. We enrolled 36 TD patients, 27 PIGD patients and 66 healthy controls (HC) from the PPMI (Parkinson's Progression Markers Initiative) database. Voxel-based morphometry (VBM) and surface-based morphometry (SBM) were utilized to assess differences in GMV, cortical thickness and cortical complexity. The structural MRI data of participants was analysed using CAT12/SPM12 (p < 0.05, FDR corrected). Additionally, correlations between clinical data and structural changes were examined (p < 0.05, Holm-Bonferroni corrected). In comparison to both HC and TD groups, PIGD patients exhibited a significant fractal dimension (FD) decrease in many cortical regions. A significant negative correlation between age and FD was observed in the left insula for the PIGD patients and in the bilateral insula for the TD patients. However, no significant differences were found in GMV, cortical thickness or other complexity indices. Altered FD in the bilateral insula indicates that postural instability and gait disturbances may result from a failure to integrate information from various structures, whereas parkinsonian rest tremor is not associated with this integration. Also, widespread decreases in cortical FD demonstrate that FD is more sensitive than other complexity measures and can serve as a novel biomarker for identifying subtle changes in cortical morphology in the PIGD subtype.

Abstract Image

帕金森病运动亚型的皮质复杂性改变:分形维数的基于表面的形态学分析。
根据运动症状,帕金森病(PD)可分为震颤主导型(TD)和姿势不稳定步态困难型(PIGD)亚型。很少有研究检查PD运动亚型的皮质复杂性差异。本研究旨在探讨TD和PIGD在皮质复杂性和灰质体积(GMV)方面的差异。我们从PPMI(帕金森进展标志物倡议)数据库中招募了36名TD患者,27名PIGD患者和66名健康对照(HC)。使用基于体素的形态测量(VBM)和基于表面的形态测量(SBM)来评估GMV、皮质厚度和皮质复杂性的差异。使用CAT12/SPM12对参与者的结构MRI数据进行分析(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信