Skin hyperspectral imaging and machine learning to accurately predict the muscular poly-unsaturated fatty acids contents in fish.

IF 6.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Current Research in Food Science Pub Date : 2024-11-18 eCollection Date: 2024-01-01 DOI:10.1016/j.crfs.2024.100929
Yi-Ming Cao, Yan Zhang, Qi Wang, Ran Zhao, Mingxi Hou, Shuang-Ting Yu, Kai-Kuo Wang, Ying-Jie Chen, Xiao-Qing Sun, Shijing Liu, Jiong-Tang Li
{"title":"Skin hyperspectral imaging and machine learning to accurately predict the muscular poly-unsaturated fatty acids contents in fish.","authors":"Yi-Ming Cao, Yan Zhang, Qi Wang, Ran Zhao, Mingxi Hou, Shuang-Ting Yu, Kai-Kuo Wang, Ying-Jie Chen, Xiao-Qing Sun, Shijing Liu, Jiong-Tang Li","doi":"10.1016/j.crfs.2024.100929","DOIUrl":null,"url":null,"abstract":"<p><p>The polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are critical determinants of the nutritional quality of fish. To rapidly and non-destructively determine the muscular PUFAs in living fish, an accuracy technique is urgently needed. In this study, we combined skin hyperspectral imaging (HSI) and machine learning (ML) methods to assess the muscular PUFAs contents of common carp. Hyperspectral images of the live fish skin were acquired in the 400-1000 nm spectral range. The spectral data were preprocessed using Savitzky-Golay (SG), multivariate scattering correction (MSC), and standard normal variable (SNV) methods, respectively. The competitive adaptive reweighted sampling (CARS) method was applied to extract the optimal wavelengths. With the skin spectra of fish, five ML methods, including the extreme learning machine (ELM), random forest (RF), radial basis function (RBF), back propagation (BP), and least squares support vector machine (LS-SVM) methods, were used to predict the PUFAs and EPA + DHA contents. With the spectral data processed with the SG, the RBF model achieved outstanding performance in predicting the EPA + DHA and PUFAs contents, yielding coefficients of determination (R<sup>2</sup> <sub>P</sub>) of 0.9914 and 0.9914, root mean square error (RMSE) of 0.3352 and 0.3346, and mean absolute error (MAE) of 0.2659 and 0.2660, respectively. Finally, the visualization distribution maps under the optimal model would facilitate the direct determination of the fillet PUFAs and EPA + DHA contents. The combination of skin HSI and the optimal ML method would be promising to rapidly select living fish having high muscular PUFAs contents.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"100929"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100929","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are critical determinants of the nutritional quality of fish. To rapidly and non-destructively determine the muscular PUFAs in living fish, an accuracy technique is urgently needed. In this study, we combined skin hyperspectral imaging (HSI) and machine learning (ML) methods to assess the muscular PUFAs contents of common carp. Hyperspectral images of the live fish skin were acquired in the 400-1000 nm spectral range. The spectral data were preprocessed using Savitzky-Golay (SG), multivariate scattering correction (MSC), and standard normal variable (SNV) methods, respectively. The competitive adaptive reweighted sampling (CARS) method was applied to extract the optimal wavelengths. With the skin spectra of fish, five ML methods, including the extreme learning machine (ELM), random forest (RF), radial basis function (RBF), back propagation (BP), and least squares support vector machine (LS-SVM) methods, were used to predict the PUFAs and EPA + DHA contents. With the spectral data processed with the SG, the RBF model achieved outstanding performance in predicting the EPA + DHA and PUFAs contents, yielding coefficients of determination (R2 P) of 0.9914 and 0.9914, root mean square error (RMSE) of 0.3352 and 0.3346, and mean absolute error (MAE) of 0.2659 and 0.2660, respectively. Finally, the visualization distribution maps under the optimal model would facilitate the direct determination of the fillet PUFAs and EPA + DHA contents. The combination of skin HSI and the optimal ML method would be promising to rapidly select living fish having high muscular PUFAs contents.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Food Science
Current Research in Food Science Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
3.20%
发文量
232
审稿时长
84 days
期刊介绍: Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信