Analysis of cell lysis for improved understanding between the shake tube and stirred tank reactor perfusion CHO cell cultures.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-02-01 Epub Date: 2024-11-27 DOI:10.1007/s10616-024-00662-x
Weijian Zhang, Qingyuan Ran, Yang Zhou, Liang Zhao, Qian Ye, Wen-Song Tan
{"title":"Analysis of cell lysis for improved understanding between the shake tube and stirred tank reactor perfusion CHO cell cultures.","authors":"Weijian Zhang, Qingyuan Ran, Yang Zhou, Liang Zhao, Qian Ye, Wen-Song Tan","doi":"10.1007/s10616-024-00662-x","DOIUrl":null,"url":null,"abstract":"<p><p>Shake tubes (ST) are widely employed to assist the development of the stirred tank reactor (STR) perfusion cell culture. However, cell lysis may be frequently underrestimated and lead to culture performance discrepency between these systems, rendering the ST model ineffective in designing the STR perfusion cultures. In this study, perfusion culture performance bewteen the STR and ST was investigated under various conditions with the analysis of cell lysis. Comparable performance was observed bewteen the two systems at low perfusion rates ( <math><mi>D</mi></math> ≤1.0 VVD), except that the specific productivity ( <math><msub><mi>q</mi> <mi>P</mi></msub> </math> ) of the STR was decreased at <math><mi>D</mi></math> =0.5 VVD, which was related to product degradation by cell lysis. In contrast, significant differences in cell maintenance, metabolism, and <math><msub><mi>q</mi> <mi>P</mi></msub> </math> were found at <math><mi>D</mi></math> =2.0 VVD. By the analysis of the authentic cell growth and death kinetics, it was found that cell growth arrest, potentially due to the limited availability of oxygen, led to the stable cell maintenance at VCD≈90 × 10<sup>6</sup> cells/ml and altered cellular metabolism for the ST, while the continuous decline of VCD and <math><msub><mi>q</mi> <mi>P</mi></msub> </math> in the STR were related to excessive cell death, subsequently ascribed to the harmful hydrodynamic stress conditions. We further demonstrated that cell lysis accounted for 57.62-76.29% of the total generated biomass in both the reactors and significantly impacted the estimation of process descriptors crucial for understanding the true cellular states. With cell lysis in sight, cell performance can therefore be accurately described and this knowledge can be further leveraged to expedite process development for the perfusion cell culture processes.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 1","pages":"7"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00662-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Shake tubes (ST) are widely employed to assist the development of the stirred tank reactor (STR) perfusion cell culture. However, cell lysis may be frequently underrestimated and lead to culture performance discrepency between these systems, rendering the ST model ineffective in designing the STR perfusion cultures. In this study, perfusion culture performance bewteen the STR and ST was investigated under various conditions with the analysis of cell lysis. Comparable performance was observed bewteen the two systems at low perfusion rates ( D ≤1.0 VVD), except that the specific productivity ( q P ) of the STR was decreased at D =0.5 VVD, which was related to product degradation by cell lysis. In contrast, significant differences in cell maintenance, metabolism, and q P were found at D =2.0 VVD. By the analysis of the authentic cell growth and death kinetics, it was found that cell growth arrest, potentially due to the limited availability of oxygen, led to the stable cell maintenance at VCD≈90 × 106 cells/ml and altered cellular metabolism for the ST, while the continuous decline of VCD and q P in the STR were related to excessive cell death, subsequently ascribed to the harmful hydrodynamic stress conditions. We further demonstrated that cell lysis accounted for 57.62-76.29% of the total generated biomass in both the reactors and significantly impacted the estimation of process descriptors crucial for understanding the true cellular states. With cell lysis in sight, cell performance can therefore be accurately described and this knowledge can be further leveraged to expedite process development for the perfusion cell culture processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信