Effects of land cover and protected areas on flying insect diversity.

IF 5.2 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
James S Sinclair, Dominik Buchner, Mark O Gessner, Jörg Müller, Steffen U Pauls, Stefan Stoll, Ellen A R Welti, Claus Bässler, Jörn Buse, Frank Dziock, Julian Enss, Thomas Hörren, Robert Künast, Yuanheng Li, Andreas Marten, Carsten Morkel, Ronny Richter, Sebastian Seibold, Martin Sorg, Sönke Twietmeyer, Dirk Weis, Wolfgang Weisser, Benedikt Wiggering, Martin Wilmking, Gerhard Zotz, Mark Frenzel, Florian Leese, Peter Haase
{"title":"Effects of land cover and protected areas on flying insect diversity.","authors":"James S Sinclair, Dominik Buchner, Mark O Gessner, Jörg Müller, Steffen U Pauls, Stefan Stoll, Ellen A R Welti, Claus Bässler, Jörn Buse, Frank Dziock, Julian Enss, Thomas Hörren, Robert Künast, Yuanheng Li, Andreas Marten, Carsten Morkel, Ronny Richter, Sebastian Seibold, Martin Sorg, Sönke Twietmeyer, Dirk Weis, Wolfgang Weisser, Benedikt Wiggering, Martin Wilmking, Gerhard Zotz, Mark Frenzel, Florian Leese, Peter Haase","doi":"10.1111/cobi.14425","DOIUrl":null,"url":null,"abstract":"<p><p>Widespread insect losses are a critical global problem. Mitigating this problem requires identifying the principal drivers across different taxa and determining which insects are covered by protected areas. However, doing so is hindered by missing information on most species owing to extremely high insect diversity and difficulties in morphological identification. To address this knowledge gap, we used one of the most comprehensive insect DNA metabarcoding data sets assembled (encompassing 31,846 flying insect species) in which data were collected from a network of 75 Malaise traps distributed across Germany. Collection sites encompass gradients of land cover, weather, and climate, along with differences in site protection status, which allowed us to gain broader insights into how insects respond to these factors. We examined changes in total insect biomass, species richness, temporal turnover, and shifts in the composition of taxa, key functional groups (pollinators, threatened species, and invasive species), and feeding traits. Lower insect biomass generally equated to lower richness of all insects and higher temporal turnover, suggesting that biomass loss translates to biodiversity loss and less stable communities. Spatial variability in insect biomass and composition was primarily driven by land cover, rather than weather or climate change. As vegetation and land-cover heterogeneity increased, insect biomass increased by 50% in 2019 and 56% in 2020 and total species richness by 58% and 33%, respectively. Similarly, areas with low-vegetation habitats exhibited the highest richness of key taxa, including pollinators and threatened species, and the widest variety of feeding traits. However, these habitats tended to be less protected despite their higher diversity. Our results highlight the value of heterogeneous low vegetation for promoting overall insect biomass and diversity and that better protection of insects requires improved protection and management of unforested areas, where many biodiversity hotspots and key taxa occur.</p>","PeriodicalId":10689,"journal":{"name":"Conservation Biology","volume":" ","pages":"e14425"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/cobi.14425","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Widespread insect losses are a critical global problem. Mitigating this problem requires identifying the principal drivers across different taxa and determining which insects are covered by protected areas. However, doing so is hindered by missing information on most species owing to extremely high insect diversity and difficulties in morphological identification. To address this knowledge gap, we used one of the most comprehensive insect DNA metabarcoding data sets assembled (encompassing 31,846 flying insect species) in which data were collected from a network of 75 Malaise traps distributed across Germany. Collection sites encompass gradients of land cover, weather, and climate, along with differences in site protection status, which allowed us to gain broader insights into how insects respond to these factors. We examined changes in total insect biomass, species richness, temporal turnover, and shifts in the composition of taxa, key functional groups (pollinators, threatened species, and invasive species), and feeding traits. Lower insect biomass generally equated to lower richness of all insects and higher temporal turnover, suggesting that biomass loss translates to biodiversity loss and less stable communities. Spatial variability in insect biomass and composition was primarily driven by land cover, rather than weather or climate change. As vegetation and land-cover heterogeneity increased, insect biomass increased by 50% in 2019 and 56% in 2020 and total species richness by 58% and 33%, respectively. Similarly, areas with low-vegetation habitats exhibited the highest richness of key taxa, including pollinators and threatened species, and the widest variety of feeding traits. However, these habitats tended to be less protected despite their higher diversity. Our results highlight the value of heterogeneous low vegetation for promoting overall insect biomass and diversity and that better protection of insects requires improved protection and management of unforested areas, where many biodiversity hotspots and key taxa occur.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Conservation Biology
Conservation Biology 环境科学-环境科学
CiteScore
12.70
自引率
3.20%
发文量
175
审稿时长
2 months
期刊介绍: Conservation Biology welcomes submissions that address the science and practice of conserving Earth's biological diversity. We encourage submissions that emphasize issues germane to any of Earth''s ecosystems or geographic regions and that apply diverse approaches to analyses and problem solving. Nevertheless, manuscripts with relevance to conservation that transcend the particular ecosystem, species, or situation described will be prioritized for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信