Low-cost acrylic cranioplasty using an implant cast on a pre-printed 3D polylactic acid model in a child with a complicated osteolytic extradural hydatid cyst.
{"title":"Low-cost acrylic cranioplasty using an implant cast on a pre-printed 3D polylactic acid model in a child with a complicated osteolytic extradural hydatid cyst.","authors":"Mehdi Borni, Brahim Kammoun, Marouen Taallah, Souhir Abdelmouleh, Jihen Boughariou, Mohamed Zaher Boudawara","doi":"10.1007/s00381-024-06663-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cranioplasty to restore calvarial defects involves reconstruction with alloplastic materials or autologous tissues in order to provide the best protection to all intracranial contents. Sometimes, autologous bone may not be available; therefore, different materials have emerged such as polymethylmethacrylate plate, titanium mesh, and hydroxyapatite. However, when it is impossible to replace the autologous bone, the aesthetic result is generally unsatisfactory. Some techniques like neuronavigation and computer-aided design can help overcome these problems. However, these techniques cost too much. By combining these techniques and that of 3D printing, some authors have provided an aesthetically precise and cost-effective implant using polymethylmethacrylate in patients with large craniectomy defects. Here, the authors report a case of a 6-year-old child with history of two previous surgeries for osteolytic extradural and complicated hydatid cyst followed by intracerebral dissemination who was admitted for recurrence of his hydatid pathology. The child was scheduled for hydatid cysts resection and cranioplasty using the polymethylmethacrylate, after removal of the hydatid cysts, using a bone flap cast on a pre-printed cost-effective polylactic acid 3D mold.</p>","PeriodicalId":9970,"journal":{"name":"Child's Nervous System","volume":"41 1","pages":"26"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Child's Nervous System","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00381-024-06663-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cranioplasty to restore calvarial defects involves reconstruction with alloplastic materials or autologous tissues in order to provide the best protection to all intracranial contents. Sometimes, autologous bone may not be available; therefore, different materials have emerged such as polymethylmethacrylate plate, titanium mesh, and hydroxyapatite. However, when it is impossible to replace the autologous bone, the aesthetic result is generally unsatisfactory. Some techniques like neuronavigation and computer-aided design can help overcome these problems. However, these techniques cost too much. By combining these techniques and that of 3D printing, some authors have provided an aesthetically precise and cost-effective implant using polymethylmethacrylate in patients with large craniectomy defects. Here, the authors report a case of a 6-year-old child with history of two previous surgeries for osteolytic extradural and complicated hydatid cyst followed by intracerebral dissemination who was admitted for recurrence of his hydatid pathology. The child was scheduled for hydatid cysts resection and cranioplasty using the polymethylmethacrylate, after removal of the hydatid cysts, using a bone flap cast on a pre-printed cost-effective polylactic acid 3D mold.
期刊介绍:
The journal has been expanded to encompass all aspects of pediatric neurosciences concerning the developmental and acquired abnormalities of the nervous system and its coverings, functional disorders, epilepsy, spasticity, basic and clinical neuro-oncology, rehabilitation and trauma. Global pediatric neurosurgery is an additional field of interest that will be considered for publication in the journal.