Molecular Mechanisms of Aerosol Nucleation: from CLOUD Chamber Experiments to Field Observations.

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Chimia Pub Date : 2024-11-27 DOI:10.2533/chimia.2024.739
Lubna Dada, Wei Huang, Imad El-Haddad
{"title":"Molecular Mechanisms of Aerosol Nucleation: from CLOUD Chamber Experiments to Field Observations.","authors":"Lubna Dada, Wei Huang, Imad El-Haddad","doi":"10.2533/chimia.2024.739","DOIUrl":null,"url":null,"abstract":"<p><p>Atmospheric aerosol particles contribute to over four million premature deaths annually and play a critical role in modulating Earth's climate. Most atmospheric particles and more than 50% of the cloud condensation nuclei are formed through a secondary process named new particle formation involving unique precursor vapors. This article summarizes current knowledge of how new atmospheric particles form, based on experiments at the CERN CLOUD chamber. While the role of sulfuric acid has long been known, other vapors like highly oxygenated organic molecules and iodine oxoacids are also important, along with stabilizers like ammonia, amines, and ions from cosmic rays. We explain how findings from CLOUD experiments help us understand particle formation in various atmospheric conditions and improve air quality and climate models.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"78 11","pages":"739-747"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2024.739","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric aerosol particles contribute to over four million premature deaths annually and play a critical role in modulating Earth's climate. Most atmospheric particles and more than 50% of the cloud condensation nuclei are formed through a secondary process named new particle formation involving unique precursor vapors. This article summarizes current knowledge of how new atmospheric particles form, based on experiments at the CERN CLOUD chamber. While the role of sulfuric acid has long been known, other vapors like highly oxygenated organic molecules and iodine oxoacids are also important, along with stabilizers like ammonia, amines, and ions from cosmic rays. We explain how findings from CLOUD experiments help us understand particle formation in various atmospheric conditions and improve air quality and climate models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chimia
Chimia 化学-化学综合
CiteScore
1.60
自引率
0.00%
发文量
144
审稿时长
2 months
期刊介绍: CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信