Lavandula angustifolia oil induces oxidative stress, stiffening of membranes, and cell wall in Cryptococcus spp.

IF 1.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Canadian journal of microbiology Pub Date : 2025-01-01 Epub Date: 2024-12-02 DOI:10.1139/cjm-2024-0084
Yohana Porto Calegari-Alves, Rafael Lopes da Rosa, Renata Pereira Costa, Camila Innocente-Alves, Aline Martins Faustino, John R Yates, Walter Orlando Beys-da-Silva, Lucélia Santi
{"title":"<i>Lavandula angustifolia</i> oil induces oxidative stress, stiffening of membranes, and cell wall in <i>Cryptococcus</i> spp.","authors":"Yohana Porto Calegari-Alves, Rafael Lopes da Rosa, Renata Pereira Costa, Camila Innocente-Alves, Aline Martins Faustino, John R Yates, Walter Orlando Beys-da-Silva, Lucélia Santi","doi":"10.1139/cjm-2024-0084","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> species complexes are the etiological agents of cryptococcosis, a disease responsible for 181 000 deaths annually worldwide due to late diagnosis and limited treatment options. Studies focusing on the identification of new substances with antifungal activity, such as essential oils (EOs), are urgently needed. While the antifungal effects of EO have already been suggested, their mechanism of action at the molecular level still requires evaluation. In this work, we assessed the molecular changes induced by the exposure of <i>Cryptococus neoformans</i> (H99) and <i>Cryptococcus deuterogatti</i> (R265) to lavender essential oil (LEO) using a morphological and proteomics approach. The identified proteins were categorized by Gene Ontology according to biological processes and molecular functions, and Kyoto Encyclopedia of Genes and Genomes pathway analysis was also conducted. Our findings indicate that LEO creates a stressful environment in both strains; however, the response to this stimulus differs between the two species. In <i>C. neoformans</i>, changes were observed in energy metabolism and pathways related to alternative sources of energy and oxidative stress response. In <i>C. deuterogatti</i>, changes were identified in pathways related to cellular architecture, implying that the cell underwent morphological changes such as membrane and cell wall stiffening.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"1-13"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0084","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Cryptococcus neoformans and Cryptococcus gattii species complexes are the etiological agents of cryptococcosis, a disease responsible for 181 000 deaths annually worldwide due to late diagnosis and limited treatment options. Studies focusing on the identification of new substances with antifungal activity, such as essential oils (EOs), are urgently needed. While the antifungal effects of EO have already been suggested, their mechanism of action at the molecular level still requires evaluation. In this work, we assessed the molecular changes induced by the exposure of Cryptococus neoformans (H99) and Cryptococcus deuterogatti (R265) to lavender essential oil (LEO) using a morphological and proteomics approach. The identified proteins were categorized by Gene Ontology according to biological processes and molecular functions, and Kyoto Encyclopedia of Genes and Genomes pathway analysis was also conducted. Our findings indicate that LEO creates a stressful environment in both strains; however, the response to this stimulus differs between the two species. In C. neoformans, changes were observed in energy metabolism and pathways related to alternative sources of energy and oxidative stress response. In C. deuterogatti, changes were identified in pathways related to cellular architecture, implying that the cell underwent morphological changes such as membrane and cell wall stiffening.

薰衣草精油诱导隐球菌氧化应激、膜硬化和细胞壁硬化。
新型隐球菌和加蒂隐球菌是隐球菌病的病原,隐球菌病由于诊断晚和治疗选择有限,每年在全世界造成18.1万人死亡。迫切需要研究鉴定具有抗真菌活性的新物质,如精油(EOs)。虽然已经发现了EO的抗真菌作用,但其在分子水平上的作用机制仍有待进一步研究。在这项工作中,我们利用形态学和蛋白质组学的方法评估了新型隐球菌(H99)和deuterogatti隐球菌(R265)暴露于薰衣草精油(LEO)后所引起的分子变化。根据生物过程和分子功能对鉴定的蛋白质进行基因本体分类,并进行京都基因与基因组百科全书通路分析。我们的研究结果表明,LEO在两种菌株中都产生了压力环境;然而,这两个物种对这种刺激的反应是不同的。在C. neoformmans中,观察到能量代谢和与替代能量来源和氧化应激反应相关的途径的变化。在deuterogatti中,发现了与细胞结构相关的通路的变化,这意味着细胞发生了膜和细胞壁硬化等形态学变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
71
审稿时长
2.5 months
期刊介绍: Published since 1954, the Canadian Journal of Microbiology is a monthly journal that contains new research in the field of microbiology, including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信