Oxidative modifications control aberrant tyrosine kinase activity.

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2022-11-01 DOI:10.1116/6.0003970
Paul Schulan, Kristian Wende, Thomas von Woedtke, Klaus-Dieter Weltmann, Sander Bekeschus, Ramona Clemen
{"title":"Oxidative modifications control aberrant tyrosine kinase activity.","authors":"Paul Schulan, Kristian Wende, Thomas von Woedtke, Klaus-Dieter Weltmann, Sander Bekeschus, Ramona Clemen","doi":"10.1116/6.0003970","DOIUrl":null,"url":null,"abstract":"<p><p>Therapy resistance is a major reason for the fatal consequences of cancer. The tumor microenvironment (TME) often is associated with the production of excess reactive oxygen species (ROS). ROS are capable of introducing oxidative post-translational modifications (oxPTMs) to proteins targeted in cancer therapy, such as tyrosine kinases (TKs), and ROS could render their functionality. However, little is known about the occurrence or magnitude of such processes, partially because mimicking the TME producing several short-lived ROS types at once is technically challenging. Gas plasma technology, a partially ionized gas generating a multitude of ROS types simultaneously and at high concentrations, was used to model pro-oxidative conditions in the TME and study the functional consequences in three TKs (epidermal growth factor receptor, sarcoma, and vascular endothelial growth factor receptor 2) targeted clinically. TKs dissolved in liquids were exposed to gas plasma, and a drastic reduction in their activity was observed. Hypothesizing that this was due to gas plasma-generated ROS, plasma-treated TKs were analyzed by high-resolution mass spectrometry for the type and quantity of oxPTM types using an in-house database. Preferred oxidation targets were identified as sulfur-containing and aromatic amino acids. OxPTMs were detected on amino acid residues that have important structural or catalytic functions in TKs, such as the adenosine triphosphate-binding site, but also on amino acid residues that are targets for therapeutic applications, such as TK inhibitors. While the practical relevance of these findings remains to be discovered, our results suggest that excessive ROS concentrations potentially contribute to TK activity reduction in the TME. The mass spectrometry data are available via ProteomeXchange with identifier PXD056912.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0003970","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Therapy resistance is a major reason for the fatal consequences of cancer. The tumor microenvironment (TME) often is associated with the production of excess reactive oxygen species (ROS). ROS are capable of introducing oxidative post-translational modifications (oxPTMs) to proteins targeted in cancer therapy, such as tyrosine kinases (TKs), and ROS could render their functionality. However, little is known about the occurrence or magnitude of such processes, partially because mimicking the TME producing several short-lived ROS types at once is technically challenging. Gas plasma technology, a partially ionized gas generating a multitude of ROS types simultaneously and at high concentrations, was used to model pro-oxidative conditions in the TME and study the functional consequences in three TKs (epidermal growth factor receptor, sarcoma, and vascular endothelial growth factor receptor 2) targeted clinically. TKs dissolved in liquids were exposed to gas plasma, and a drastic reduction in their activity was observed. Hypothesizing that this was due to gas plasma-generated ROS, plasma-treated TKs were analyzed by high-resolution mass spectrometry for the type and quantity of oxPTM types using an in-house database. Preferred oxidation targets were identified as sulfur-containing and aromatic amino acids. OxPTMs were detected on amino acid residues that have important structural or catalytic functions in TKs, such as the adenosine triphosphate-binding site, but also on amino acid residues that are targets for therapeutic applications, such as TK inhibitors. While the practical relevance of these findings remains to be discovered, our results suggest that excessive ROS concentrations potentially contribute to TK activity reduction in the TME. The mass spectrometry data are available via ProteomeXchange with identifier PXD056912.

氧化修饰控制异常酪氨酸激酶活性。
治疗耐药性是癌症致命后果的主要原因。肿瘤微环境(TME)通常与过量活性氧(ROS)的产生有关。ROS能够将氧化翻译后修饰(oxPTMs)引入到靶向癌症治疗的蛋白质中,如酪氨酸激酶(TKs), ROS可以发挥其功能。然而,对这种过程的发生或规模知之甚少,部分原因是模仿TME同时产生几种短寿命ROS类型在技术上具有挑战性。气体等离子体技术是一种部分电离的气体,可同时产生多种高浓度的ROS类型,该技术用于模拟TME中的促氧化条件,并研究临床靶向三种TKs(表皮生长因子受体、肉瘤和血管内皮生长因子受体2)的功能后果。溶解在液体中的TKs暴露在气体等离子体中,观察到它们的活性急剧降低。假设这是由于气体等离子体产生的ROS,使用内部数据库,通过高分辨率质谱分析等离子体处理的tk的oxPTM类型和数量。优选的氧化目标是含硫氨基酸和芳香氨基酸。在TK中具有重要结构或催化功能的氨基酸残基(如三磷酸腺苷结合位点)上检测到OxPTMs,但在作为治疗应用靶点的氨基酸残基(如TK抑制剂)上也检测到OxPTMs。虽然这些发现的实际意义仍有待发现,但我们的研究结果表明,过量的ROS浓度可能导致TME中TK活性降低。质谱数据可通过ProteomeXchange获得,标识符为PXD056912。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信